
CampaignChain Documentation
Release

October 16, 2016

Contents

I Abstract 1

II What is CampaignChain? 5

1 What is CampaignChain? 9

2 What is CampaignChain? 13

III CampaignChain Community Edition 19

3 CampaignChain Community Edition 23

IV CampaignChain Enterprise Edition 93

4 CampaignChain Enterprise Edition 97

V Users 99

5 User Manual 103

VI Packages 111

6 Packages 115

VII Contributing to Documentation 127

7 About this Documentation 131

VIII Miscellanea 133

8 Glossary 135

i

ii

Part I

Abstract

1

CampaignChain Documentation, Release

This is the CampaignChain documentation. It provides information to end users, administrators and developers.

3

CampaignChain Documentation, Release

4

Part II

What is CampaignChain?

5

CampaignChain Documentation, Release

With CampaignChain, marketers can plan, execute, monitor and optimize campaigns in a holistic overview. Program-
mers can integrate communication channels, tools and devices with our open-source platform.

Today, marketers face an increasing amount of online channels, tools and devices (IoT, beacons). As the opportunities
for highly targeted marketing grow, so does fragmentation of workflows. CampaignChain is the only marketing
technology that allows for a comprehensive real-time access to all marketing activities.

Our goal is to help everyone make innovative marketing ideas come true.

7

CampaignChain Documentation, Release

8

CHAPTER 1

What is CampaignChain?

CampaignChain is open-source campaign management software to plan, execute and monitor digital marketing cam-
paigns across multiple online communication channels, such as Twitter2, Facebook3, Google Analytics4 or third-party
CMS, e-commerce and CRM tools.

For marketers, CampaignChain enables marketing managers to have a complete overview of digital campaigns and
provides one entry point to multiple communication channels for those who implement campaigns.

1.1 Key Features

CampaignChain covers three main areas of outbound and inbound campaign management:

Planning

• Define campaign goals and milestones.

• Create and schedule campaign activities and operations on multiple online channels.

• View and modify campaign activities and operations using an interactive timeline.

Execution

• Automatically execute scheduled activities and operations.

• Collect data for monitoring during campaign duration.

• Automatically notify responsible persons if errors occur during campaign execution.

Monitoring

• Analytics reports: Channel-specific reporting and analytics (number of Facebook views and comments, number
of Twitter retweets, and so on) for accurate campaign ROI measurement.

• Budget reports: Defining budgets and spend per channel.

• Sales reports: Integrate with CRM and other tools to view and analyze leads generated by each campaign.

This is a high-level overview of the features and architecture:

2 http://twitter.com
3 http://facebook.com
4 http://www.google.com/analytics

9

http://twitter.com
http://facebook.com
http://www.google.com/analytics

CampaignChain Documentation, Release

1.2 Basic Concepts

CampaignChain’s software architecture has been designed along digital marketing terms and concepts in a specialized
way, so this section gets you up to speed on CampaignChain’s terminology and explains the main entities to you.

CampaignChain knows two types of entities, a Medium and an Action, which are:

Medium Action

• Channel
• Location

• Campaign
• Milestone
• Activity
• Operation

10 Chapter 1. What is CampaignChain?

CampaignChain Documentation, Release

1.2.1 Campaigns

Campaigns are at the core of CampaignChain, and are the “DNA of modern digital marketing”1. In CampaignChain,
every campaign uses one or more communication channels. Campaigns also have milestones and activities.

Campaigns usually come in two variants: manually scheduled campaigns, which have a defined start and end date,
and triggered campaigns (also called nurtured campaigns), which occur in response to user events. A campaign
focused on a new product launch is an example of the former, whereas a drip email campaign that begins when a user
fills up a registration form is an example of the latter.

1.2.2 Channels & Locations

Campaigns use online channels, which are the pathways by which campaign content reaches its audience. Com-
mon examples of channels include websites, blogs and social networks like Facebook and LinkedIn. For monitoring
purposes, CampaignChain also allows connections to channels to retrieve traffic statistics (e.g. Google or YouTube
Analytics) and lead generation data maintained in a CRM.

Every channel includes one or more locations, which allow granular publishing of campaign content. For example, a
Twitter channel has only one location: the Twitter stream. However, a website channel might have various locations:
a landing page, a banner on the home page, a “Contact Us” page with a form, and so on. Similarly, a LinkedIn
channel might consist of two locations: a company profile page and a news stream. Locations are being created when
connecting to a new Channel.

Furthermore, Locations can be created by an Operation. For example, an Operation that posts a Tweet on a Twitter
stream is essentially creating a new Location (i.e. that Tweet) within a Location (i.e. a Twitter user’s stream). Learn
more about Operations below.

1.2.3 Milestones

Milestones are key events or reference points during a campaign. For example, the campaign go-live date could be a
milestone, and a press tour could be a second milestone. When you set up campaign milestones, related actions can
be defined. For example, you could compare analytics data between two milestones. Or you could notify a member of
your marketing team to start working on the next set of tasks once a milestone has been reached.

1.2.4 Activities and Operations

Every location allows one or more activities which can be undertaken. For example, creating a new post is an example
of an activity for a blog channel.

Every activity must always have at least one operation. For example, posting on Twitter is one activity which equals
the operation.

In other cases, a single activity may encompass multiple operations. For example, defining and creating a Google
AdWords campaign that runs for 3 months is a possible activity for the Google AdWords channel. However, this
activity could consist of two operations: the first operation might be a Google Ad that runs for the first 2 months of
the campaign, and the second operation would be a second, different Google Ad that runs for the remaining 4 weeks.

1.3 User Interface

CampaignChain’s Web-based user interface is responsive and works on Desktop computers as well as mobile devices
such as Tablets and Smartphones.

1 This terminology was used by Lars Trieloff in his Feb 2014 presentation, which also inspires CampaignChain’s architecture.

1.3. User Interface 11

http://www.slideshare.net/lars3loff/the-dna-of-marketing

CampaignChain Documentation, Release

1.4 Footnotes

12 Chapter 1. What is CampaignChain?

CHAPTER 2

What is CampaignChain?

CampaignChain is open-source campaign management software to plan, execute and monitor digital marketing cam-
paigns across multiple online communication channels, such as Twitter6, Facebook7, Google Analytics8 or third-party
CMS, e-commerce and CRM tools.

For developers, CampaignChain is a platform to integrate key marketing campaign management functions with data
from multiple channels. It is implemented in PHP9 on top of the Symfony framework10.

2.1 Key Features

CampaignChain covers three main areas of outbound and inbound campaign management:

Planning

• Define campaign goals and milestones.

• Create and schedule campaign activities and operations on multiple online channels.

• View and modify campaign activities and operations using an interactive timeline.

Execution

• Automatically execute scheduled activities and operations.

• Collect data for monitoring during campaign duration.

• Automatically notify responsible persons if errors occur during campaign execution.

Monitoring

• Analytics reports: Channel-specific reporting and analytics (number of Facebook views and comments, number
of Twitter retweets, and so on) for accurate campaign ROI measurement.

• Budget reports: Defining budgets and spend per channel.

• Sales reports: Integrate with CRM and other tools to view and analyze leads generated by each campaign.

This is a high-level overview of the features and architecture:

6 http://twitter.com
7 http://facebook.com
8 http://www.google.com/analytics
9 http://php.net

10 http://symfony.com

13

http://twitter.com
http://facebook.com
http://www.google.com/analytics
http://php.net
http://symfony.com

CampaignChain Documentation, Release

2.2 Basic Concepts

CampaignChain’s software architecture has been designed along digital marketing terms and concepts in a specialized
way, so this section gets you up to speed on CampaignChain’s terminology and explains the main entities to you.

CampaignChain knows two types of entities, a Medium and an Action, which are:

Medium Action

• Channel
• Location

• Campaign
• Milestone
• Activity
• Operation

14 Chapter 2. What is CampaignChain?

CampaignChain Documentation, Release

2.2.1 Campaigns

Campaigns are at the core of CampaignChain, and are the “DNA of modern digital marketing”1. In CampaignChain,
every campaign uses one or more communication channels. Campaigns also have milestones and activities.

Campaigns usually come in two variants: manually scheduled campaigns, which have a defined start and end date,
and triggered campaigns (also called nurtured campaigns), which occur in response to user events. A campaign
focused on a new product launch is an example of the former, whereas a drip email campaign that begins when a user
fills up a registration form is an example of the latter.

2.2.2 Channels & Locations

Campaigns use online channels, which are the pathways by which campaign content reaches its audience. Com-
mon examples of channels include websites, blogs and social networks like Facebook and LinkedIn. For monitoring
purposes, CampaignChain also allows connections to channels to retrieve traffic statistics (e.g. Google or YouTube
Analytics) and lead generation data maintained in a CRM.

Every channel includes one or more locations, which allow granular publishing of campaign content. For example, a
Twitter channel has only one location: the Twitter stream. However, a website channel might have various locations:
a landing page, a banner on the home page, a “Contact Us” page with a form, and so on. Similarly, a LinkedIn
channel might consist of two locations: a company profile page and a news stream. Locations are being created when
connecting to a new Channel.

Furthermore, Locations can be created by an Operation. For example, an Operation that posts a Tweet on a Twitter
stream is essentially creating a new Location (i.e. that Tweet) within a Location (i.e. a Twitter user’s stream). Learn
more about Operations below.

2.2.3 Milestones

Milestones are key events or reference points during a campaign. For example, the campaign go-live date could be a
milestone, and a press tour could be a second milestone. When you set up campaign milestones, related actions can
be defined. For example, you could compare analytics data between two milestones. Or you could notify a member of
your marketing team to start working on the next set of tasks once a milestone has been reached.

2.2.4 Activities and Operations

Every location allows one or more activities which can be undertaken. For example, creating a new post is an example
of an activity for a blog channel.

Every activity must always have at least one operation. For example, posting on Twitter is one activity which equals
the operation.

In other cases, a single activity may encompass multiple operations. For example, defining and creating a Google
AdWords campaign that runs for 3 months is a possible activity for the Google AdWords channel. However, this
activity could consist of two operations: the first operation might be a Google Ad that runs for the first 2 months of
the campaign, and the second operation would be a second, different Google Ad that runs for the remaining 4 weeks.

2.2.5 Operations and Locations

Locations are created when connecting to a new Channel or by an Operation. Upon creation by a Channel, the URL
of the Location is usually known and can be stored in the system when creating the new Location. For example,

1 This terminology was used by Lars Trieloff in his Feb 2014 presentation, which also inspires CampaignChain’s architecture.

2.2. Basic Concepts 15

http://www.slideshare.net/lars3loff/the-dna-of-marketing

CampaignChain Documentation, Release

when connecting a new Twitter user stream to CampaignChain, the user’s URL on Twitter will be accessible (e.g.
www.twitter.com/ordnas).

This is different when it comes to Operations. An Operation could well create a Location stub without the URL and
only provide the URL after the Operation has been executed. For example, the URL of a scheduled tweet will only be
generated by Twitter once the tweet has been posted. Hence, CampaignChain allows Operations to create Locations
without a URL, but requires them to provide a URL when the Operation gets executed.

2.2.6 Visual Summary

The following diagram explains the relationship between the various entities.

It should be clear from this diagram an Activity is never related directly to a Channel. The relationship is always
Channel -> Location -> Activity -> Operation.

A more concrete example of this relationship is illustrated below.

16 Chapter 2. What is CampaignChain?

CampaignChain Documentation, Release

2.3 Modules and Hooks

CampaignChain has been designed so that it does not require you to replace existing digital marketing applications.
Instead, it serves as a platform for integrating such applications and acts as a cockpit for managing digital marketing
campaigns.

2.3.1 Modules

Due to CampaignChain’s modules architecture, any online channel along with its locations can be integrated. Further-
more, custom campaigns, milestones, activities and operations can be developed. Given that CampaignChain is built
on top of the Symfony framework, modules can use functionality provided by other modules.

2.3.2 Hooks

Hooks are reusable components that provide common functionality and can be used across modules to configure
campaigns, milestones, channels, locations, activities and operations. CampaignChain already provides a number of
hooks and developers can easily add new ones.

For example, CampaignChain comes with an assignee hook, which makes it possible to assign specific channels or
activities to members of a marketing team. Similarly, CampaignChain’s due date hook can be used to specify a due
date for a Twitter post activity; the same hook can be reused to define a due date for a campaign milestone.

2.3. Modules and Hooks 17

CampaignChain Documentation, Release

2.4 Call to Action

CampaignChain allows tracking Calls to Action across various Channels and Locations to understand which Opera-
tions had the highest impact. Imagine the following conversion funnel:

1. A Twitter post links to a landing page on a website.

2. The landing page includes a registration form to download something.

3. All the personal data collected in the form will be saved as leads in a CRM.

With CampaignChain, you will be able to understand how many leads have been generated by that specific Twitter
post.

Learn more about the details of CampaignChain’s Call to Action (CTA) Tracking (page 36).

2.5 User Interface

CampaignChain’s Web-based user interface has been implemented with Bootstrap 311. Thus, it is responsive and
works on desktop computers as well as mobile devices such as tablets and smartphones.

2.6 Footnotes

11 http://getbootstrap.com

18 Chapter 2. What is CampaignChain?

http://getbootstrap.com

Part III

CampaignChain Community Edition

19

CampaignChain Documentation, Release

The CampaignChain Community Edition is available under an Open Source license on GitHub. It is the first open-
source platform for marketing integration.

21

CampaignChain Documentation, Release

22

CHAPTER 3

CampaignChain Community Edition

The CampaignChain Community Edition is available under an Open Source license on GitHub. It is the first open-
source platform for marketing integration.

3.1 Developers

Get started with CampaignChain quickly in this step-by-step guide.

3.1.1 Quick Tour for Developers

Learn how to start developing with CampaignChain. This page gives you some pointers to the most important concepts
behind CampaignChain, how to install it and a tutorial that explains how to create your first modules to connect to an
online channel.

Installation

Install CampaignChain with some sample data in 10 minutes! Learn all about the system requirements, step-by-step in-
stallation and configuration as well as how to load the sample data in the Community Edition installation
tutorial.

Architecture

Before you start developing with CampaignChain, please make yourself familiar with the following concepts of its
software architecture:

1. Features, entities, calls to action (page 13)

2. General introduction to modules (page 25)

Development

Customizing and enhancing CampaignChain can all be done through modules. There is an in-depth tutorial available
that shows you how to Connect a new Online Channel (page 47).

Learn the general concepts of developing with CampaignChain.

23

CampaignChain Documentation, Release

3.1.2 The Developer Book

Development Mode

It is highly recommended that you configure CampaignChain to run in development mode while you work on the code.

To enable development mode, set the campaignchain.env‘‘parameter to ‘‘true in
app/config/parameters.yml.

You should only do this prior to a fresh installation of CampaignChain and not switch back to production mode for
that installation.

When in development mode, the following happens:

require-dev in composer.json

While in development mode, CampaignChain will upon installation also register CampaignChain modules which have
been defined in the require-dev section of your project’s composer.json file.

Development Tools

The navigation bar will display an icon to access various developer tools from within the CampaignChain user inter-
face, such as loading sample data (page 40).

Modules Repositories

You can specify modules repositories that should be used in development mode instead of the ones you defined for the
production instance.

24 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

The development modules repositories can be defined in the campaignchain.yml of a distribution module.

modules:
repositories:

- http://www.example.com/modules/
repositories-dev:

- http://www.example.com/modules/dev/

In case no development modules repositories have been defined under repositories-dev, CampaignChain will
fall back and use the ones specified under repositories.

Module Basics

CampaignChain uses a modular architecture, allowing developers to integrate any online channel along with its loca-
tions, activities and operations.

This document provides an overview of common concepts that developers should know when developing Campaign-
Chain modules, e.g. for custom channels, locations, activities and operations.

Framework

Symfony CampaignChain has been built on top of the PHP-based Symfony framework13. Therefore, custom mod-
ules should also be developed with Symfony.

Doctrine Within Symfony, CampaignChain uses Doctrine14 as its Object-Relation Mapper (ORM). This allows
usage of various databases in the back-end.

Bootstrap 3 CampaignChain’s GUI is based on Bootstrap 315 and module developers should follow its best practices
of responsive design.

Types of Modules

CampaignChain’s core can be extended through various types of modules, each covering a certain feature set. The
following pre-defined types exist:

• Activity, e.g. post on Facebook or Twitter.

• Campaign, to develop custom campaign functionality (e.g. nurtured campaigns).

• Channel, to connect to channels such as Facebook or Twitter.

• Location, to manage e.g. various Facebook pages.

• Milestone, e.g. to develop a new kind of milestone besides the default one with a due date.

• Operation, similar to Activity module type.

• Report, to create custom analytics, budget or sales reports for ROI monitoring.

• Security, e.g. functionality for channels to log in to third-party systems.

13 http://symfony.com/
14 http://doctrine-project.org
15 http://getbootstrap.com

3.1. Developers 25

http://symfony.com/
http://doctrine-project.org
http://getbootstrap.com

CampaignChain Documentation, Release

• Distribution, an aggregation of bundles and system-wide configuration, e.g. the CampaignChain Community
Edition16.

The concepts in this document apply to all types of modules.

• For information specific to building channel and location modules, refer to the Channels and Locations page.

• For information specific to building activity and operation modules, refer to the Activities and Operations page.

Packaging

CampaignChain modules are developed as Symfony bundles17. One Symfony bundle must contain at least one Cam-
paignChain module and can contain various CampaignChain modules of the same type.

To allow CampaignChain to install a bundle along with its module(s), the bundle must contain the following two
configuration files in its root:

• composer.json: CampaignChain modules (residing inside a Symfony bundle), are installed/distributed as Com-
poser18 packages. This file holds information relevant to Composer.

• campaignchain.yml: This file holds all the CampaignChain-specific module configuration parameters.

Since CampaignChain is built on top of the Symfony framework, modules can use functionality provided by other
modules mainly through Symfony services19.

Versioning

The version number of module packages for CampaignChain must follow the syntax laid out in the Semantic Version-
ing20 specification.

Bundle Generation

When building an CampaignChain module, the first step is to create a new Symfony bundle21.

Configuration Files

Every bundle with CampaignChain modules must have the following two configuration files, which are essential for
CampaignChain to correctly identify and integrate the included module(s).

These files must be located in the root of the bundle directory.

composer.json The bundle’s composer.json file follows standard Composer conventions. The type parameter must
belong to the set of pre-defined module types as outlined previously. Here is a list of parameters typically seen in this
file:

• require: A list of package dependencies

• description: A human-readable description for the bundle

• keywords: Additional descriptive keywords for the bundle

16 https://github.com/CampaignChain/distribution-ce
17 http://symfony.com/doc/current/cookbook/bundles/index.html
18 https://getcomposer.org
19 http://symfony.com/doc/current/book/service_container.html
20 http://semver.org/
21 http://symfony.com/doc/current/bundles/SensioGeneratorBundle/commands/generate_bundle.html

26 Chapter 3. CampaignChain Community Edition

https://github.com/CampaignChain/distribution-ce
https://github.com/CampaignChain/distribution-ce
http://symfony.com/doc/current/cookbook/bundles/index.html
https://getcomposer.org
https://getcomposer.org
http://symfony.com/doc/current/book/service_container.html
http://semver.org/
http://semver.org/
http://symfony.com/doc/current/bundles/SensioGeneratorBundle/commands/generate_bundle.html

CampaignChain Documentation, Release

• homepage: A link to the bundles’s website

• license: The license under which the bundle and its modules are made available

• authors: A list of package authors

Example:

{
"name": "campaignchain/channel-twitter",
"description": "Connect with Twitter.",
"keywords": ["twitter","oauth"],
"type": "campaignchain-channel",
"homepage": "http://www.groganz.com",
"license": "Proprietary",
"authors": [

{
"name": "Sandro Groganz",
"email": "sandro@campaignchain.com"

}
],
"require": {

"campaignchain/core": "dev-master",
"campaignchain/security-authentication-client-oauth": "dev-master"

}
}

In addition to the schema of the composer.json file22 developers of CampaignChain modules should also follow the
best practices outlined below.

Parameter name The name of the bundle. Typically this is the application name or vendor name, followed by a
separating slash (/), then the module type followed by a dash and the bundle’s purpose.

The schematic representation of the syntax is: <application or vendor name>/<bundle type>-<purpose of bundle>

Example: campaignchain/channel-twitter

Parameter type The type of the bundle, which must be one of

• campaignchain-channel

• campaignchain-location

• campaignchain-activity

• campaignchain-operation

• campaignchain-report

• campaignchain-campaign

• campaignchain-security

• campaignchain-milestone

Custom types are not supported and CampaignChain will display an error if it encounters a type value outside the
above allowed set.

22 https://getcomposer.org/doc/04-schema.md

3.1. Developers 27

https://getcomposer.org/doc/04-schema.md

CampaignChain Documentation, Release

Other Parameters Required by CampaignChain

• description: A human-readable description for the bundle

• keywords: Additional descriptive keywords for the bundle

• homepage: A link to the bundles’s website

• license: The license under which the bundle and its modules are made available

• authors: A list of package authors

campaignchain.yml The bundle’s campaignchain.yml file specifies all CampaignChain modules contained in the
bundle. Per module, it defines parameters such as the internal name of the module, used to reference it from other
modules, as well as any associated Symfony routes23 and Symfony services24 or CampaignChain hooks. The infor-
mation in the file varies depending on the module type and requirements.

The typical structure of the campaignchain.yml file is as follows:

modules:
|module-identifier|:

display_name: |display name|
channels:

- |channel identifier|
- |channel identifier|
...

services:
- job: |service identifier|

routes:
- new: |route identifier|
- edit: |route identifier|
- edit_modal: |route identifier|
- edit_api: |route identifier|
- read: |route identifier|

hooks:
- |hook-name|: |true|false|
- |hook-name|: |true|false|
...

system:
navigation:

settings:
- [|Nav item name|, |symfony_route|]
...

...
|module-identifier|:

...

Example: An activity module’s campaignchain.yml file lists the channels the activity belongs to and the Symfony routes
to create and edit new activities.

modules:
campaignchain-twitter-update-status:

display_name: 'Update Status'
channels:

- campaignchain/channel-twitter/campaignchain-twitter
services:

job: campaignchain.activity.twitter.job.update_status
routes:

23 http://symfony.com/doc/current/book/routing.html
24 http://symfony.com/doc/current/book/service_container.html

28 Chapter 3. CampaignChain Community Edition

http://symfony.com/doc/current/book/routing.html
http://symfony.com/doc/current/book/service_container.html

CampaignChain Documentation, Release

new: campaignchain_activity_twitter_update_status_new
edit: campaignchain_activity_twitter_update_status_edit
edit_modal: campaignchain_activity_twitter_update_status_edit_modal
edit_api: campaignchain_activity_twitter_update_status_edit_api

hooks:
campaignchain-due: true
campaignchain-duration: false
campaignchain-assignee: true

Module Identifier The module’s identifier should be provided as the child of the modules parameter. Multiple
modules can be specified in this way. The recommended syntax of the module identifier is to use dashes (-) to separate
words, which helps to separate it from the parameters which use underscores. Furthermore, the identifier should start
with an application or vendor name followed by a string that best captures the purpose of the module.

In sum, the recommended syntax is: <application or vendor name>-<purpose of module>

Example: campaignchain-twitter-update-status

Note: It is important to note that the module identifier must be unique per module type across bundles. In other
words: In a bundle, only CampaignChain modules of the same type are allowed and the identifier of each module must
be unique in all bundles containing the same type of modules.

Parameter display_name All modules have to specify the module name that will be displayed in CampaignChain’s
graphical user interface by providing a string as the value of the display_name parameter.

Parameter services A module can define the following services to be consumed by CampaignChain.

• job: This service will be called by CampaignChain’s scheduler to automatically execute functionality, e.g.
publishing a scheduled post to Twitter.

Parameter routes Within the campaignchain.yml configuration file, CampaignChain recognizes four types of Sym-
fony routes.

• new: The route to invoke when creating a new Channel, Location, Activity, Operation

• edit: The route to invoke when editing an existing Channel, Location, Activity, Operation

• edit_modal: The route to invoke for the pop-up view of the ‘edit’ route

• edit_api: The route to invoke for the submit action of the ‘edit_modal’ route

• read: The route where information can be viewed

Parameter hooks Hooks can be assigned to a module by specifying the hook’s identifier and true to activate it or
false to deactivate it. If a hook is omitted, CampaignChain will regard it as inactive.

Parameter system This parameter allows a module to define system-wide configuration options. For example, to
add a new navigation item to the settings navigation menu available in the header of CampaignChain’s graphical user
interface.

3.1. Developers 29

CampaignChain Documentation, Release

Parameters Specific to a Module Type Some module types require certain parameters in the campaignchain.yml
configuration file to be defined. For example, an Activity module should list at least one related channel module. Sim-
ilarly, an Operation module must define whether it creates a Location or not. You will find more detailed information
in the documentation related to a specific module type.

Channel and Location Modules

This document provides an overview of concepts that developers should know when developing Channel and Location
modules.

Note: Every Channel must include at least one Location.

Naming Conventions (Channel)

composer.json

• The name parameter should be of the form [application name or vendor name]/channel-[channel name].

Example: campaignchain/channel-twitter

• The type parameter should be ‘campaignchain-channel’.

campaignchain.yml

• The name of a Channel module should follow the convention [application name or vendor name]-[channel
name].

Example: campaignchain-twitter

Naming Conventions (Location)

composer.json

• The name parameter should be of the form [application name or vendor name]/location-[channel name]-[bundle
purpose].

Example: campaignchain/location-twitter-status-update

• The type parameter should be ‘campaignchain-location’.

campaignchain.yml

• The name of a Location module should follow the convention [application name or vendor name]-[channel
name]-[location descriptor].

Example: campaignchain-twitter-user

Wizards and Routes

CampaignChain provides a set of “wizards” that ease integration of your module into the CampaignChain GUI. The
Channel Wizard takes care of redirecting the client browser to the appropriate routes when creating or editing a channel
and/or location.

Channel and Location module developers should use the Channel Wizard as a convenient way to attach and persist a
new location for a channel. The Channel Wizard can be invoked from within a controller using the service identifier
‘campaignchain.core.channel.wizard’ as shown below.

30 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

<?php
// invoke and use channel wizard
$wizard = $this->get('campaignchain.core.channel.wizard');
$wizard->setName($profile->displayName);
$wizard->addLocation($location->getIdentifier(), $location);
$channel = $wizard->persist();
$wizard->end();

The route used by the Channel Wizard is obtained from the module configuration in the Channel bundle’s campaign-
chain.yml file:

modules:
campaignchain-linkedin:

display_name: LinkedIn
routes:

new: campaignchain_channel_linkedin_create

Location Module and Service

The Channel Wizard’s addLocation() method should be passed a Location object representing the location to be added
to the channel. CampaignChain’s Location service can be used to retrieve the correct Location module, using the
Location bundle name and Location module identifier. The location service is available using the identifier ‘cam-
paignchain.core.location’.

<?php
$locationService = $this->get('campaignchain.core.location');
$locationModule = $locationService->getLocationModule(

'campaignchain/location-linkedin', 'campaignchain-linkedin-user');

In this example, the Location service finds the Location module named ‘campaignchain-linkedin-user’ in the bundle
named ‘campaignchain/location-linkedin’.

Channel Authentication

CampaignChain provides an OAuthBundle (based on HybridAuth) which can be used for OAuth-based authentica-
tion with online channels. The client can be accessed as a Symfony service using the service identifier ‘campaign-
chain.security.authentication.client.oauth.application’.

<?php
$oauthApp = $this->get(

'campaignchain.security.authentication.client.oauth.application');
$application = $oauthApp->getApplication(self::RESOURCE_OWNER);

if(!$application){
return $oauthApp->newApplicationTpl(self::RESOURCE_OWNER,

$this->applicationInfo);
}
else {

return $this->render(
'CampaignChainChannelLinkedInBundle:Create:index.html.twig',
array(

'page_title' => 'Connect with LinkedIn',
'app_id' => $application->getKey(),

)
);

}

3.1. Developers 31

CampaignChain Documentation, Release

The client’s getApplication() method retrieves any existing channel credentials (that were previously configured) from
the CampaignChain database. In case no such credentials exist (such as the first time a location is created), the
getApplicationTpl() method generates a Web form for the user to input the required data.

CampaignChain also provides an OAuth authentication client via the ‘campaign-
chain.security.authentication.client.oauth.authentication’ identifier. The client’s authenticate() method can be
used to perform authentication against the remote service.

<?php
$oauth = $this->get(

'campaignchain.security.authentication.client.oauth.authentication');
$status = $oauth->authenticate(self::RESOURCE_OWNER,

$this->applicationInfo);

Note: CampaignChain’s OAuthBundle is an optional bundle to ease authentication with third-party services. Devel-
opers are free to implement their own authentication client, or use third-party clients as needed.

Channel Icon

Each Channel module must provide a channel icon image in PNG format with size 16x16 pixels. The image file must
reside in the your-project/src/your-bundle-namespace/Resources/public/images/icons/16x16/ folder of the bundle and
the image’s file name should match the descriptive string used at the end of the bundle name.

Example: The bundle named ‘campaignchain/channel-google’ would have its icon reside at your-
project/src/Acme/CampaignChain/Channel/GoogleBundle/Resources/public/images/icons/16x16/google.png.

Activity and Operation Modules

This document provides an overview of concepts that developers should know when developing Activity and Operation
modules.

Note: Every Activity must include at least one Operation and at least one Job.

Naming Conventions (Activity)

composer.json

• The name parameter should be of the form [application name or vendor name]/activity-[bundle purpose].

Example: campaignchain/activity-twitter

• The type parameter should be ‘campaignchain-activity’.

campaignchain.yml

• The name of an Activity module should follow the convention [application name or vendor name]-[channel
name]-[bundle purpose].

Example: campaignchain-twitter-update-status

32 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

Naming Conventions (Operation)

composer.json

• The name parameter should be of the form [application name or vendor name]/operation-[bundle purpose].

Example: campaignchain/operation-twitter

• The type parameter should be ‘campaignchain-operation’.

campaignchain.yml

• The name of an Operation module should follow the convention [application name or vendor name]-[channel
name]-[operation descriptor].

Example: campaignchain-twitter-update-status

Linking Activities and Channels

The Activity bundle’s campaignchain.yml file should contain a channels parameter, which specifies the link between
the Channel and the Activity. The channels parameter should be of the form [channel bundle name]/[channel module
name]

Example: ‘acme/channel-linkedin/acme-linkedin’ refers to the Channel bundle ‘acme/channel-linkedin’ and the Chan-
nel module within it named ‘acme-linkedin’.

Wizards and Routes

CampaignChain provides a set of “wizards” that ease integration of your module into the CampaignChain GUI. The
Activity Wizard takes care of presenting the user with a form that lists available campaigns, channels and operations.
Based on the user’s selection in the form, the Activity Wizard is able to retrieve and display the available Operations
for the selected Channel and link it to the selected Campaign.

The Activity Wizard can be invoked from within a controller using the service identifier ‘campaign-
chain.core.activity.wizard’ as shown below.

<?php
// invoke and use activity wizard
$wizard = $this->get('campaignchain.core.activity.wizard');
$campaign = $wizard->getCampaign();
$activity = $wizard->getActivity();

The routes and display name used by the Activity Wizard are obtained from the module configuration in the Activity
bundle’s campaignchain.yml file:

modules:
campaignchain-linkedin-share-news-item:

display_name: 'Share News'
channels:

- campaignchain/channel-linkedin/campaignchain-linkedin
routes:

new: campaignchain_activity_linkedin_share_news_item_new
edit: campaignchain_activity_linkedin_share_news_item_edit
edit_modal: campaignchain_activity_linkedin_share_news_item_edit_modal
edit_api: campaignchain_activity_linkedin_share_news_item_edit_api

hooks:
campaignchain-due: true

3.1. Developers 33

CampaignChain Documentation, Release

Activities with a Single Operation

If an Activity has only one Operation, this should be made explicit by calling the Activity object’s setEqualsOperation()
method, as shown below:

<?php
$wizard = $this->get('campaignchain.core.activity.wizard');
$activity = $wizard->getActivity();
$activity->setEqualsOperation(true);

Operation Form

When a user defines a new operation, CampaignChain renders a form with fields appropriate to that operation. This
form must be included within the Operation module. The easiest way to create this form is by using Symfony’s Form
component and FormBuilder interface to define a Form object, as shown below:

<?php
use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;
use Symfony\Component\DependencyInjection\ContainerInterface;

class ShareNewsItemOperationType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('message', 'text', array(

'property_path' => 'message',
'label' => 'Message',
'attr' => array(

'placeholder' => 'Add message...',
'max_length' => 200

)
));

$builder
->add('submitUrl', 'text', array(

'property_path' => 'linkUrl',
'label' => 'URL of page being shared',
'attr' => array(

'placeholder' => 'Add URL...',
'max_length' => 255

)
));

// ... and so on //

}
}

This Form object can then be used within controller action methods to create or edit a new operation, as shown below:

<?php
$activityType = $this->get('campaignchain.core.form.type.activity');
$shareNewsItemOperation = new ShareNewsItemOperationType(

34 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

$this->getDoctrine()->getManager(), $this->get('service_container')
);
$operationForms[] = array(

'identifier' => self::OPERATION_IDENTIFIER,
'form' => $shareNewsItemOperation,
'label' => 'LinkedIn Message',

);
$activityType->setOperationForms($operationForms);

$form = $this->createForm($activityType, $activity);
$form->handleRequest($request);

if ($form->isValid()) {
// process input

}

Operation Module and Service

The Activity object’s addOperation() method should be passed an Operation object representing the operation to be
added to the activity. CampaignChain’s Operation service can be used to retrieve the correct Operation module, using
the Operation bundle name and module identifier. The Operation service is available using the identifier ‘campaign-
chain.core.operation’.

<?php
$operationService = $this->get('campaignchain.core.operation');
$operationModule = $operationService->getOperationModule(

'campaignchain/operation-linkedin', 'campaignchain-linkedin-share-news-item'
);

$operation = new Operation();
$operation->setName($activity->getName());
$operation->setActivity($activity);
$activity->addOperation($operation);

In this example, the Operation service finds the Operation module named ‘campaignchain-linkedin-share-news-item’
in the bundle named ‘campaignchain/operation-linkedin’.

Jobs

Every Operation module should include a Job, which actually executes the operation. This Job should implement the
JobServiceInterface, which mandates an execute() method that is called when the job is executed. The Job is invoked
by the CampaignChain scheduler when an Operation becomes due; it can also be invoked manually to execute an
operation immediately.

Hooks

To process the hooks associated with an Activity, CampaignChain makes a Hook service available, via the service
name ‘campaignchain.core.hook’. Call this service’s processHooks() method to process the hooks for an Activity, as
shown below:

<?php
$hookService = $this->get('campaignchain.core.hook');
$activity = $hookService->processHooks(

3.1. Developers 35

CampaignChain Documentation, Release

self::BUNDLE_NAME, self::MODULE_IDENTIFIER, $activity, $data
);

Operations and Locations

An Operation can create a new Location as its end result and/or it can include CTAs that point to Locations. For
example, a LinkedIn news sharing Operation would create a new Location - a Linkedin status message that is directly
accessible via a unique URL.

When you create a new Activity within CampaignChain, your Operation should also create a Location entry. At the
time the Activity is created, the Location entry will necessarily be incomplete as the URL to the Location will not be
known.

Once the Operation is executed, the Job that executes it must update the Location with the URL. It must also change
the Location’s status from ‘STATUS_UNPUBLISHED’ to ‘STATUS_ACTIVE’.

It’s important to define the owns_location parameter in the Operation module’s campaignchain.yml file as shown
below:

modules:
campaignchain-linkedin-share-news-item:

display_name: 'Share News'
owns_location: true
services:

job: campaignchain.operation.linkedin.job.share_news_item

Call to Action (CTA) Tracking

This section describes the inner workings of CampaignChain’s Call to Action Tracking. The provided information is
useful for anyone developing Operation modules with CampaignChain or for those configuring third-party channels
to work with CampaignChain.

What is a CTA?

In web design, a CTA is a banner, button, or some type of graphic or text on a website meant to prompt a
user to click it and continue down a conversion funnel. It is an essential part of inbound marketing as well
as permission marketing in that it actively strives to convert a user into a lead and later into a customer.

—Wikipedia25

In CampaignChain, a CTA is essentially a URL that appears in a HTML href link or form action. It appears within
an Operation and each Operation can contain 0 to many CTAs. For example, a tweet could include various links that
CampaignChain treats as CTAs, while a Google Ad would contain only 1 link as the CTA.

Tracking ID

CampaignChain leverages two types of IDs for its CTA tracking:

• CTA Tracking ID: Each CTA has a unique ID assigned by CampaignChain per URL that is included in an
Operation. If you read about just the Tracking ID in the documentation, then it’s referring to the CTA Tracking
ID.

25 http://en.wikipedia.org/wiki/Call_to_action_%28marketing%29

36 Chapter 3. CampaignChain Community Edition

http://en.wikipedia.org/wiki/Call_to_action_%28marketing%29

CampaignChain Documentation, Release

• Channel Tracking ID: For each Channel that has been connected with CampaignChain, a unique ID will be
generated. This ID must be provided in the tracking code that is being included in a Channel. When the tracking
code is activated, CampaignChain checks whether the provided Channel Tracking ID exists and whether the
tracking code has been executed from a URL that actually resides within the Channel.

Tracking Process

To make CTA tracking work, a Channel that is connected with CampaignChain provides the relevant information to
CampaignChain for tracking the CTA path that is part of a conversion funnel.

High-level View From a 30,000-feet perspective, this is how the tracking process works:

1. A link or form inside an Operation acts as the initial CTA at the beginning of a marketing funnel. The initial CTA
contains a unique Tracking ID which allows CampaignChain to trace back the link to the respective Actions and
Media (Campaign, Activity, Operation, Location, etc.). For example, a Twitter post that links to a landing page
within a website.

2. All subsequent Locations inside a connected Channel ping CampaignChain and let it know through the Tracking
ID that the respective Location was referred by a CTA.

The communication between CampaignChain and a Channel is achieved through JavaScript included in the Channel
that posts the CTA information to CampaignChain and optionally also through REST-based communication between
CampaignChain and the Channel. Depending on the depth of integration between CampaignChain and a Channel,
there are 3 different types of tracking (described in subsequent sections).

In-depth Flow Description The single steps of the CTA tracking process are as follows:

1. The Operation’s content gets parsed for links right before execution.

2. If the Operation contains 1 or more links, the following happens:

2.1. A unique Tracking ID gets assigned to each URL, no matter if an Operation contains the same URLs multiple
times.

Note: An Operation could well contain the same URL multiple times, For example, a banner image on a landing
page could point to the same URL in its key visual as well as a button that is part of the banner. When analyzing the
effectiveness of the banner image, you want to know whether the key visual or the button caused more clicks. That’s
why each of them gets treated as a unique CTA with its own Tracking ID, although they have the same URL.

2.2. The Tracking ID gets appended to the URLs found inside the Operation.

2.2.1. If it is a full URL, then append the Tracking ID and replace the original URL with a shortened URL (Campaign-
Chain uses Bit.ly26 by default).

2.2.2. If the URL is already shortened, expand it, append the Tracking ID and replace the original shortened URL with
a new shortened URL.

2.3. For each link, an entry is made in the CTA table with the Tracking ID and the related Operation as well as the
original URL (full and short, if the latter was provided).

3. CampaignChain executes the Operation that now contains the new short URLs with the Tracking ID, e.g. it publishes
a status update on Twitter that contains a link to a landing page.

26 http://dev.bitly.com

3.1. Developers 37

http://dev.bitly.com

CampaignChain Documentation, Release

4. When someone activates a CTA, e.g. clicks a link in a Tweet published by CampaignChain, the URL points to a
Location. If that Location is part of a Channel that includes the tracking code and is connected with CampaignChain,
then the following happens:

4.1. The tracking code checks whether the URL that pointed to the current page includes the Tracking ID. If yes, then
it proceeds. If not, then it exits.

4.2. If the Tracking ID exists, the Tracking code sends this information to CampaignChain: Channel Tracking ID,
CTA Tracking ID, URL of current Location, URL of target Location and additional information useful for monitoring.

4.3. CampaignChain checks whether the Channel Tracking ID is valid, i.e. if the Channel sending the tracking data is
actually connected with CampaignChain.

4.3.1. If yes, then it performs some validity checks on the data, most notably whether the Tracking ID exists within
CampaignChain, and finally saves the tracking data for monitoring purposes.

4.3.2. If no, then it will not save the data and instead notify the admin of an error (most likely, the Tracking Code has
been included in a Channel that has not been connected with CampaignChain yet or this is a Denial of Service attack).

4.4. While CampaignChain processes the tracking data, the tracking code in the Channel appends the Tracking ID to
the target URL (if another one does not exist yet, because the target URL is part of a new Operation) or saves it in a
cookie. It then redirects the visitor to the target Location.

Note: Passing on the Tracking ID enables CampaignChain to do two things:

• Understand, whether e.g. the visitor browses a website away from a landing page before coming back to it and
activating a CTA that leads to another Operation.

• Track the effectiveness of Operations across Channels.

Types of Tracking

To track CTAs, different types of tracking are used with CampaignChain to monitor the inbound marketing funnel.

CampaignChain-to-Channel (unidirectional)

• Integration level: Useful if CTA is under control, but not the Channel.

• Example: We can add a Tracking ID to a link that will be published on Twitter, but we cannot install something
on Twitter to establish a connection between Twitter and CampaignChain to exchange information.

• Tracking ID: The Tracking ID must be included in the CTA. It is important, because it helps to distinguish
between Campaigns and Activities if e.g. the same Landing Page is being used as a CTA target within the same
Campaign various times or in different campaigns.

• Pros: Simple to implement by adding the Tracking ID to the URL of the CTA.

• Cons: Ideally, CampaignChain would be in control of the Operation (e.g. posting to Twitter from within Cam-
paignChain). If not possible, then a user would have to manually append the Tracking ID.

Channel-to-CampaignChain (unidirectional)

• Integration level: The channel sends information about the Operation, Location and CTA to CampaignChain.

• Example: A JavaScript snippet included in Wordpress sends information to CampaignChain about a link’s URL
that was clicked inside a blog post, as well as the URL of the blog entry, etc.

38 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

• Tracking ID: At least the Tracking ID of the initial CTA should be available. Then CampaignChain is able
to match the CTA’s URL provided by the Channel with the Campaign and Activity it belongs to. Information
about the source and target Location is also provided by the Channel for CampaignChain to easily map the
related URLs to the Locations inside CampaignChain.

• Pros: This approach has the security advantage that the third-party application is in control of the communica-
tion towards CampaignChain.

• Cons: There must be a mechanism inside the Channel that ensures that at least the Tracking ID of the initial
CTA is being carried on to the target Location.

CampaignChain-to-Channel (bidirectional)

• Integration level: CampaignChain and the Channel are tightly integrated when it comes to creating Operations
and Locations, thus providing maximum communication between the two when it comes to CTA tracking.

• Example: A landing page has been created within Wordpress. With CampaignChain connected to Wordpress
(e.g. through a REST API), CampaignChain grabs the content of the Wordpress page, parses it, stores the
CTAs the page includes and makes the page public at the scheduled time. As in the unidirectional Channel-to-
CampaignChain approach, a JavaScript snippet inside Wordpress sends information to CampaignChain once the
CTA gets activated.

• Tracking ID: CampaignChain can pass all Tracking IDs for the CTAs in a Location to the Channel to be ap-
pended to each respective URL inside a Location for more granular tracking.

• Pros: The tighter coupling allows for more granular tracking, i.e. it is possible for CampaignChain to identify
not just a Location, but also the Operation that includes a triggered CTA. Also, this approach has the performance
advantage that the Channel as well as CampaignChain can handle the tracking more efficiently, because both
are aware of all relevant information.

• Cons: Creating the tighter integration requires a higher investment in terms of time and money.

Development Environment

CampaignChain, Inc. provides a live development environment which provides readily available online channels to
test CampaignChain modules against along with sample data that automatically sets up CampaignChain to be used
with the development environment.

Name

The fictitious company featured in the development environment is called Amariki. This word was invented by Emilia,
the younger daughter of Sandro Groganz, who initiated the CampaignChain project and is the founder of Campaign-
Chain, Inc.

Yet, no one figured out whether it means anything in one of the languages on earth.

Online Channels

The following online channels have been set up for developers:

• http://wordpress.amariki.com (default Wordpress installation with test data)

• https://twitter.com/AmarikiTest1

• https://twitter.com/AmarikiTest2

• Facebook test user Amariki Test One

3.1. Developers 39

http://wordpress.amariki.com
https://twitter.com/AmarikiTest1
https://twitter.com/AmarikiTest2

CampaignChain Documentation, Release

• Facebook test user Amariki Test Two

• Linkedin test user

• http://www.slideshare.net/amariki_test

• Bit.ly user amariki

• MailChimp user amariki

• GoToWebinar test user

To use these channels when developing modules for CampaignChain, you can load ready-made sample data into
CampaignChain as described below.

Sample Data

By default, CampaignChain ships with the following sample data packages if installed with the --stability=dev
option through Composer27.

• amariki/data-test28

• amariki/data-demo29

Learn how to load sample data (page 40) in CampaignChain.

Note: Please contact partner@campaignchain.com to retrieve a credentials.yml file that works out-of-the-box
with above data packages and the development environment.

Test Emails

We have test email accounts for above test online channels. For example, as an account email to receive notifications
from Twitter or a recipient email to send MailChimp newsletters to.

Note: Please contact partner@campaignchain.com to apply for access to the email inbox where we collect all incom-
ing test emails and to retrieve a list of available test emails.

Sample Data

It is possible to load sample data into CampaignChain, which eases the development process.

Warning:
• Don’t use sample data in production environments, because they might be buggy or contain confidential data.
• All existing data in your CampaignChain might be wiped out. Make sure you backup your CampaignChain

database if you are not sure whether the sample data you load is safe.

27 https://getcomposer.org
28 https://github.com/Amariki/data-test
29 https://github.com/Amariki/data-demo

40 Chapter 3. CampaignChain Community Edition

http://www.slideshare.net/amariki_test
https://getcomposer.org
https://github.com/Amariki/data-test
https://github.com/Amariki/data-demo
mailto:partner@campaignchain.com
mailto:partner@campaignchain.com

CampaignChain Documentation, Release

Packages

Sample data for CampaignChain are being made available as Composer packages30 and can be installed through
Composer with a command such as:

$ composer require amce/mydata

If you installed CampaignChain through composer with the --stability=dev option, these two default sample
data packages are already available:

• amariki/data-test31

• amariki/data-demo32

The default sample data leverages the live development environment, i.e. the various test accounts and
instances CampaignChain, Inc. set up at Twitter, Facebook, MailChimp, wordpress.amariki.com and other online
channels.

Take a look at above packages if you’d like to create your own sample data. Some hints:

• The data is being stored as Fixtures33.

• To have CampaignChain load your sample data, put a file data.yml into your bundle located at
Resources/data/campaignchain/.

• It’s good practice to give the super user the user name admin and password test.

Credentials

We recommend that you put all passwords, App keys, secrets, access tokens, token secrets, refresh tokens and other
security sensitive information into a dedicated credentials.yml file. Reason being that you might want to share
the sample data with others, but not the related credentials.

The aforementioned default sample data packages ship with a template file for credentials called
credentials.yml.tpl. To create your own file, follow these instructions:

1. Rename credentials.yml.tpl to credentials.yml.

2. Register your CampaignChain instance as an app for the various Channels listed as resourceOwner
in credentials.yml, such as Twitter and Facebook. If you’ve never done that, go to
http://hybridauth.sourceforge.net/userguide.html and click on a provider (e.g. Twitter). On the respective page,
there’s a section called “Registering application”. Proceed as described there.

3. Now connect a new Location in CampaignChain (e.g. a Twitter stream). When done, look up the respective to-
kens in the database table campaignchain_security_authentication_client_oauth_token
and put them into credentials.yml.

Note: If you would like to retrieve a credentials.yml file for the default sample data packages that works
out-of-the-box, check out how to apply for access to the live development environment (page 39).

30 https://getcomposer.org/doc/01-basic-usage.md#composer-json-project-setup
31 https://github.com/Amariki/data-test
32 https://github.com/Amariki/data-demo
33 https://github.com/nelmio/alice

3.1. Developers 41

https://getcomposer.org/doc/01-basic-usage.md#composer-json-project-setup
https://github.com/Amariki/data-test
https://github.com/Amariki/data-demo
https://github.com/nelmio/alice
http://hybridauth.sourceforge.net/userguide.html

CampaignChain Documentation, Release

Usage

If campaignchain.env is set to true in app/config/parameters.yml, then you will be able to load
sample data into CampaignChain in its Graphical User Interface or through a command.

To use the GUI, visit the page http://example.com/development/sample-data of your CampaignChain installation.

1. Make sure you have a working credentials.yml file - see above.

2. Load the page http://example.com/development/sample-data of your CampaignChain installation.

3. There, pick the package of choice in the field “Data file” and select credentials.yml as the Include File.
Activate the checkbox “Drop tables?” to start with a clean slate.

4. Click “Upload” and good luck :)

5. Log into CampaignChain with user admin and password test (unless otherwise specified by the package).

In addition to the user interface, you could also load sample data by using the command line. Issue the following
command in the root of your CampaignChain installation to load the test data along with its credentials:

$ php app/console campaignchain:fixture vendor/amariki/data-test/Resources/data/campaignchain/data.yml vendor/amariki/secrets/credentials_test.yml

Recovery

Should the sample data upload not work, you can try two things:

1. Fix the sample data and reload the browser window where you tried to upload the sample data.

2. If 1. does not work, install CampaignChain from scratch.

42 Chapter 3. CampaignChain Community Edition

http://example.com/development/sample-data
http://example.com/development/sample-data

CampaignChain Documentation, Release

Contributing to CampaignChain

If you would like to add new functionality or fix a bug in CampaignChain, you are more than welcomed!

In general, we follow the best practices of open-source collaboration and developed some of our own - which is mostly
due to the fact that CampaignChain is highly modular.

Find below some guidelines and we’d appreciate if you followed them. Should you have questions, please contact
us34.

Symfony

We closely follow the contribution guidelines of the Symfony project. Please make yourself acquainted with:

• Coding standards35

• Code conventions36

GitHub

We use GitHub37 to develop the CampaignChain Community Edition. It allows us to collaborate with developers
world-wide.

Please follow these guidelines:

Issues Always create an issue for the task you are working on at https://github.com/CampaignChain/campaignchain-
ee/issues.

Commit Message The Git commit message should point to the issue you are working on. The syntax is:

CampaignChain/campaignchain#{issue-number} {issue-title}

In PHPStorm38, you can use below definition for the commit message field when configuring the GitHub server to
retrieve issues within PHPStorm:

CampaignChain/{project}#{number} {summary}

Pull Requests Never commit directly to the master branch of CampaignChain or its modules. Instead, please
create branches (page 44). That way we can first test your contributions in the branch, ask you for changes, and then
merge them with the master branch.

What’s great about GitHub is that it let’s you easily create pull requests39 and then comment on it, even on single lines
of the code40.

So, once you are done with your changes and they are all committed to your branch, please create a pull request and
we’ll review it.

34 http://www.campaignchain.com/contact/
35 http://symfony.com/doc/current/contributing/code/standards.html
36 http://symfony.com/doc/current/contributing/code/conventions.html
37 http://www.github.com
38 https://www.jetbrains.com/phpstorm/
39 https://help.github.com/articles/creating-a-pull-request/
40 https://help.github.com/articles/commenting-on-differences-between-files/

3.1. Developers 43

http://www.campaignchain.com/contact/
http://www.campaignchain.com/contact/
http://symfony.com/doc/current/contributing/code/standards.html
http://symfony.com/doc/current/contributing/code/conventions.html
http://www.github.com
https://github.com/CampaignChain/campaignchain-ee/issues
https://github.com/CampaignChain/campaignchain-ee/issues
https://www.jetbrains.com/phpstorm/
https://help.github.com/articles/creating-a-pull-request/
https://help.github.com/articles/commenting-on-differences-between-files/
https://help.github.com/articles/commenting-on-differences-between-files/

CampaignChain Documentation, Release

Note: The description of a pull request should include the link to the related issue at the very top. This ensures that
the pull request is showing up when viewing the issue.

Branching

Whenever you create a new feature for CampaignChain or want to contribute a bug fix, please create a new branch of
the respective CampaignChain module(s) or Symfony bundles you are working on.

Also, make sure you create a new branch of the CampaignChain/campaignchain41 application as well.

How to Create a Branch? If you are not familiar with Git and branching, please read the introduction Basic Branch-
ing and Merging42.

The name of the branch should include campaignchain- and the number of the related issue, such as
campaignchain-42.

Inline Alias in composer.json You can define in the composer.json file of the application43, which branched mod-
ules/bundles you’d like to use for development. Just list them in the require-dev section and define the branch as
a Composer inline alias44.

Note: You must prefix our branch name with‘‘dev-‘‘.

Here’s an example how to do it for your custom module/bundle:

"require-dev": {
"acme/my-bundle": "dev-my-branch as dev-master"

},

If you are working on existing CampaignChain modules, e.g. to fix a bug, create a branch and define it as an inline
alias. All Composer version constraints45 defined elsewhere will be overridden.

"require-dev": {
"campaignchain/core": "dev-my-branch as dev-master"

},

Modify Sample Data Please branch the sample data repositories as well and then modify them sample data
(page 45) accordingly by changing existing fixtures or by adding those which allow others to test new features.

Of course, the branch name of the sample data should be the same as the branch name of the modules/bundles you are
modifying, so that we know which branch to use when loading the sample data for testing.

Branching Model We structure the flow of our development às follows:

• The master branch holds the latest stable code.

• New features are being developed in separate branches.

41 https://github.com/CampaignChain/campaignchain
42 https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
43 https://github.com/CampaignChain/campaignchain/blob/master/composer.json
44 https://getcomposer.org/doc/articles/aliases.md#require-inline-alias
45 https://getcomposer.org/doc/articles/versions.md

44 Chapter 3. CampaignChain Community Edition

https://github.com/CampaignChain/campaignchain
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://github.com/CampaignChain/campaignchain/blob/master/composer.json
https://getcomposer.org/doc/articles/aliases.md#require-inline-alias
https://getcomposer.org/doc/articles/versions.md

CampaignChain Documentation, Release

• Release branches hold the code of the tagged master branch.

Sample Data

When you are developing with CampaignChain, sample data will be available automatically. Learn how to import
sample data to the system (page 40).

To allow testing of your changes by others, please keep all the publicly available sample data packages (page 41) in
sync with your branch.

License

All code developed for the CampaignChain Community Edition is available under the Apache License46. We ask all
contributors to assign new code to the same license.

Please add a LICENSE file with the content of the Apache License47 into the root of new packages that you want to
be included as part of the CampaignChain Community Edition.

The below license block has to be present at the top of every file.

In PHP before the namespace:

/*
* Copyright 2016 CampaignChain, Inc. <info@campaignchain.com>

*
* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*
* http://www.apache.org/licenses/LICENSE-2.0

*
* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

In .yml configuration files, at the very top:

Copyright 2016 CampaignChain, Inc. <info@campaignchain.com>
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

In TWIG files at the very top:

46 http://www.apache.org/licenses/LICENSE-2.0
47 http://www.apache.org/licenses/LICENSE-2.0

3.1. Developers 45

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

CampaignChain Documentation, Release

{#
Copyright 2016 CampaignChain, Inc. <info@campaignchain.com>

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#}

In CSS files at the very top:

/*
Copyright 2016 CampaignChain, Inc. <info@campaignchain.com>

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

Credits

If you use third-party intellectual property, you must make sure that you are allowed to do so. Please add a NOTICE
file in the root directory of a new module/bundle where you credit the copyright holders. See for example the NOTICE
file of the core bundle48.

Documentation

For any changes or bug fixes, please consider amending the CampaignChain Documentation49

Error Codes

This document provides information about error codes returned by CampaignChain.

All codes are defined in the ErrorCode class50.
48 https://github.com/CampaignChain/core/blob/master/NOTICE
49 https://github.com/CampaignChain/campaignchain-docs
50 https://github.com/CampaignChain/core/blob/master/Exception/ErrorCode.php

46 Chapter 3. CampaignChain Community Edition

https://github.com/CampaignChain/core/blob/master/NOTICE
https://github.com/CampaignChain/core/blob/master/NOTICE
https://github.com/CampaignChain/campaignchain-docs
https://github.com/CampaignChain/core/blob/master/Exception/ErrorCode.php

CampaignChain Documentation, Release

Error Code Description
1001 An error in the PHP code occurred.
1002 The Operation cannot be executed in the Location.
1003 The Activity cannot be executed in the Location.
1004 The Milestone cannot be executed in the Location.
1005 The connection to the REST API failed.

Hands-on tutorials that teach you how to use CampaignChain in concrete scenarios.

3.1.3 Developer Cookbook

Connect A New Online Channel

The tutorial will walk you through the process of adding support for a new online channel - in this case, the online
professional network XING51 - to CampaignChain by creating and programming the necessary modules and packaging
them into a Symfony bundle.

The new XING modules will include functionality to connect to a user’s XING activity stream and post updates to it.

Assumptions and Prerequisites

• You have a Symfony environment52 meeting all the system requirements.

• You have a working CampaignChain development installation.

• You have a good understanding of the OAuth authentication process.

• You have a good understanding of the XING REST API. Learn more about the API53.

• You have an application registered with XING and have obtained the necessary keys. Register your applica-
tion54.

• You have an account registered with XING, or you have access to the CampaignChain live development envi-
ronment (page 39) (optional, for testing).

Overview

To connect a new online channel through CampaignChain, here are the steps you will follow:

1. Generate Channel and Location modules (page 48)

2. Create Channel and Location controllers and views (page 48)

3. Add a channel icon (page 57)

To enable activities and operations for the new channel, here are the steps you will follow:

1. Generate Operation and Activity modules (page 57)

2. Understand the API exposed by the channel you’re connecting (page 58)

3. Create entities and entity managers for your Activities and Operations (page 59)

4. Create input forms and connect them to your entities (page 63)

51 http://www.xing.com
52 http://symfony.com/doc/current/book/installation.html
53 https://dev.xing.com/docs
54 https://dev.xing.com/applications/dashboard

3.1. Developers 47

http://www.xing.com
http://symfony.com/doc/current/book/installation.html
https://dev.xing.com/docs
https://dev.xing.com/applications/dashboard
https://dev.xing.com/applications/dashboard

CampaignChain Documentation, Release

5. Create an API client and operation processor (page 65)

6. Define an Activity handler (page 69)

7. Collect metrics and create a report processor (page 77)

Connect Channels and Locations

1. Generate Channel and Location modules The first step is to create Channel and Location modules for the XING
channel. In this case, we’ll assume the organization name is Acme, and use this organization name for the module
namespaces.

The easiest way to generate these modules is with the CampaignChain module generator (included when you install
with Composer and the option –dev). The commands below walk you through the process of generating a new Channel
module. Note that you’re safe using the defaults for all interactive prompts except for certain items shown below.

$ php app/console campaignchain:generate:module
Module type: Channel
Vendor name: Acme
Module name: Xing
Module name suffix:
Module display name: XING
Module description: This module connects to XING
Author name: Acme Inc.
Author's email address: info@acme.example.com
Package license: Apache-2.0
Package description: XING module for CampaignChain
Package website URL: http://acme.example.com

Symfony will now produce a new bundle containing stub code and files, in the location your-
project/src/Acme/Channel/XingBundle. The name of the bundle will be AcmeChannelXingBundle.

Channels go hand-in-hand with Locations. Typically, a Location in a Channel refers to a specific user’s activity stream
or profile. In this tutorial, the Location will be the user’s XING news stream.

Follow the steps above to generate a similar bundle for a Location in the Channel, remembering to specify the “Module
type” as “Location” this time. The new bundle will be created at your-project/src/Acme/Location/XingBundle with the
name AcmeLocationXingBundle.

Note: Most of the code you see in the next few sections is automatically generated for you by the CampaignChain
module generator. You only need to copy and paste the parts that are specific to the channel you’re trying to connect
(in this example, XING).

2. Add Controllers and Views The Channel module takes care of creating a new Location and handling authentica-
tion between CampaignChain and the channel. The Channel module’s auto-generated campaignchain.yml file specifies
the routes and hooks used by its modules. Here’s what the file looks like:

src/Acme/Channel/XingBundle/campaignchain.yml

modules:
acme-xing:

display_name: Xing
description: This module connects to Xing
routes:

new: acme_channel_xing_create

48 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

hooks:
default:

Notice the name of the Symfony route for creating a new channel. The corresponding URL and controller is defined
in the module’s auto-generated routing.yml file, as shown below:

src/Acme/Channel/XingBundle/Resources/config/routing.yml

acme_channel_xing_create:
pattern: /channel/xing/create
defaults: { _controller: AcmeChannelXingBundle:Xing:create }

To begin, define this controller and action:

<?php
// src/Acme/Channel/XingBundle/Controller/XingController.php

namespace Acme\Channel\XingBundle\Controller;
use CampaignChain\CoreBundle\Entity\Location;
use Acme\Location\XingBundle\Entity\XingUser;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Session\Session;

class XingController extends Controller
{

const RESOURCE_OWNER = 'Xing';

const LOCATION_BUNDLE = 'acme/location-xing';

const LOCATION_MODULE = 'acme-xing';

private $applicationInfo = array(
'key_labels' => array('key', 'Consumer key'),
'secret_labels' => array('secret', 'Consumer secret'),
'config_url' => 'https://dev.xing.com/applications/dashboard',
'parameters' => array(),
'wrapper' => array(

'class'=>'Hybrid_Providers_XING',
'path' => 'vendor/hybridauth/hybridauth/additional-providers/hybridauth-xing/Providers/XING.php'

),
);

public function createAction()
{

$oauthApp = $this->get('campaignchain.security.authentication.client.oauth.application');
$application = $oauthApp->getApplication(self::RESOURCE_OWNER);

if (!$application) {

return $oauthApp->newApplicationTpl(self::RESOURCE_OWNER, $this->applicationInfo);
}

return $this->render(
'AcmeChannelXingBundle:Create:index.html.twig',
array(

'page_title' => 'Connect with Xing',
'app_id' => $application->getKey(),

)

3.1. Developers 49

CampaignChain Documentation, Release

);
}

The createAction() method wraps CampaignChain’s OAuth module and renders a splash page asking the user to
connect to the XING account by providing credentials and granting permission to CampaignChain to access user data.
This page is rendered with the view script shown below:

src/Acme/Channel/XingBundle/Resources/views/Create/index.html.twig

{% extends 'CampaignChainCoreBundle:Base:base.html.twig' %}

{% block body %}
<div class="jumbotron">

<p>Connect to a Xing account by logging in to Xing. The username and password will remain with Xing and will not be stored in this application.</p>
<p>Connect with Xing</p>

</div>

{% endblock %}

Here’s what it looks like:

Clicking the “Connect now” button in the above view requests a ‘login’ route. Define this route as below:

src/Acme/Channel/XingBundle/Resources/config/routing.yml

acme_channel_xing_login:
pattern: /channel/xing/create/login
defaults: { _controller: AcmeChannelXingBundle:Xing:login }

Next, write a corresponding controller action to use the credentials entered by the user, attempt authentication and if
successful, add the location to the CampaignChain database for later use.

To simplify this task, CampaignChain provides a Location service and a Channel Wizard which together encapsulate
most of the functionality you will need. The code below illustrates the typical process:

<?php
// src/Acme/Channel/XingBundle/Controller/XingController.php

namespace Acme\Channel\XingBundle\Controller;
use CampaignChain\CoreBundle\Entity\Location;

50 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

use Acme\Location\XingBundle\Entity\XingUser;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Session\Session;

class XingController extends Controller
{

public function loginAction(Request $request)
{

$oauth = $this->get('campaignchain.security.authentication.client.oauth.authentication');
$status = $oauth->authenticate(self::RESOURCE_OWNER, $this->applicationInfo);
$profile = $oauth->getProfile();

if(!$status){
$this->addFlash(

'warning',
'A location has already been connected for this Xing account.'

);

return $this->render(
'AcmeChannelXingBundle:Create:login.html.twig',
array(

'redirect' => $this->generateUrl('campaignchain_core_channel')
)

);
}

$repository = $this->getDoctrine()->getManager();
$repository->getConnection()->beginTransaction();

$wizard = $this->get('campaignchain.core.channel.wizard');
$wizard->setName($profile->displayName);

// Get the location module.
$locationService = $this->get('campaignchain.core.location');
$locationModule = $locationService->getLocationModule(self::LOCATION_BUNDLE, self::LOCATION_MODULE);

$location = new Location();
$location->setIdentifier($profile->identifier);
$location->setName($profile->displayName);
$location->setImage($profile->photoURL);
$location->setLocationModule($locationModule);

$wizard->addLocation($location->getIdentifier(), $location);

try {
$channel = $wizard->persist();
$wizard->end();

$oauth->setLocation($channel->getLocations()->first());

$user = new XingUser();
$user->setLocation($channel->getLocations()->first());
$user->setIdentifier($profile->identifier);
$user->setDisplayName($profile->displayName);
$user->setFirstName($profile->firstName);
$user->setLastName($profile->lastName);

3.1. Developers 51

CampaignChain Documentation, Release

$user->setProfileImageUrl($profile->photoURL);

if (isset($profile->emailVerified)) {
$user->setEmail($profile->emailVerified);

} else {
$user->setEmail($profile->email);

}

$repository->persist($user);
$repository->flush();

$repository->getConnection()->commit();

} catch (\Exception $e) {
$repository->getConnection()->rollback();
throw $e;

}

$this->addFlash(
'success',
'The Xing location '.$profile->displayName.' was connected successfully.'

);

return $this->render(
'AcmeChannelXingBundle:Create:login.html.twig',
array(

'redirect' => $this->generateUrl('campaignchain_core_channel')
)

);

}
}

The first few lines of the loginAction() action method use CampaignChain’s OAuth module, which in turn uses Hy-
bridAuth, to authenticate against the remote service. If authentication is successful, the OAuth object’s getProfile()
method returns the profile of the authenticated user. This location now needs to be added to CampaignChain’s database.

To accomplish this, the action method first creates a new Channel Wizard object, which is a convenience object that
makes it easy to connect the new location to the channel and save it to CampaignChain’s database. The Channel
Wizard is invoked as a Symfony service. The Channel Wizard is also assigned a name using its setName() method;
this could be a fixed name, or based on input entered by the user (although you’d need to provide a form field in the
view to accept this input).

The whole point of logging in is to authorize CampaignChain to connect a Location. So, the action method then
calls CampaignChain’s Location service to identify the Location module. The Location module’s name and unique
module identifier play a critical role in helping the Channel Wizard correctly identify and store the Location so that
CampaignChain can generate routes for the Location.

The method initializes a new Location object using the information from the returned user profile, and attaches this
Location object to the Channel using the Channel Wizard’s addLocation() method. The information about the new
Location is saved to the database using the Channel Wizard’s persist() method.

Since every Location is typically associated with a user profile or activity stream, it makes sense to also store additional
information about the user in the CampaignChain database. The typical properties you’d want to store are the user
identifier, first name, last name, email address, profile URL and profile image URL, plus any properties specific to the
channel you’re connecting. In this example, this information is encapsulated in a XingUser entity, with properties and
getter/setter methods for the user identifier, first name, last name, email address, XING profile URL and XING profile
image URL.

52 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

The XingUser entity logically belongs in the Location module and can be seen below. Entity records are stored
in the acme_location_xing_user table in the CampaignChain database and each record has a 1:1 relationship with
CampaignChain’s core Location entity.

<?php
// src/Acme/Location/XingBundle/Entity/XingUser.php

namespace Acme\Location\XingBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use CampaignChain\CoreBundle\Util\ParserUtil;

/**
* @ORM\Entity

* @ORM\Table(name="acme_location_xing_user")

*/
class XingUser
{

/**
* @ORM\Column(type="integer")

* @ORM\Id

* @ORM\GeneratedValue(strategy="AUTO")

*/
protected $id;

/**
* @ORM\OneToOne(targetEntity="CampaignChain\CoreBundle\Entity\Location", cascade={"persist"})

*/
protected $location;

/**
* @ORM\Column(type="string", length=255, unique=true)

*/
protected $identifier;

/**
* @ORM\Column(type="string", length=255)

*/
protected $displayName;

/**
* @ORM\Column(type="string", length=255, nullable=true)

*/
protected $firstName;

/**
* @ORM\Column(type="string", length=255, nullable=true)

*/
protected $lastName;

/**
* @ORM\Column(type="string", length=255, nullable=true)

*/
protected $email;

/**
* @ORM\Column(type="string", length=255, nullable=true)

*/
protected $profileUrl;

3.1. Developers 53

CampaignChain Documentation, Release

/**
* @ORM\Column(type="string", length=255, nullable=true)

*/
protected $profileImageUrl;

/**
* Get id

*
* @return integer

*/
public function getId()
{

return $this->id;
}

/**
* Set location

*
* @param \CampaignChain\CoreBundle\Entity\Location $location

* @return User

*/
public function setLocation(\CampaignChain\CoreBundle\Entity\Location $location = null)
{

$this->location = $location;
return $this;

}

/**
* Get location

*
* @return \CampaignChain\CoreBundle\Entity\Location

*/
public function getLocation()
{

return $this->location;
}

/**
* Set identifier

*
* @param string $identifier

* @return LocationBase

*/
public function setIdentifier($identifier)
{

$this->identifier = $identifier;
return $this;

}

/**
* Get identifier

*
* @return string

*/
public function getIdentifier()
{

return $this->identifier;
}

54 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

/**
* Set displayName

*
* @param string $displayName

* @return User

*/
public function setDisplayName($displayName)
{

$this->displayName = $displayName;
return $this;

}

/**
* Get displayName

*
* @return string

*/
public function getDisplayName()
{

return $this->displayName;
}

/**
* Set firstName

*
* @param string $firstName

* @return User

*/
public function setFirstName($firstName)
{

$this->firstName = $firstName;
return $this;

}

/**
* Get firstName

*
* @return string

*/
public function getFirstName()
{

return $this->firstName;
}

/**
* Set lastName

*
* @param string $lastName

* @return User

*/
public function setLastName($lastName)
{

$this->lastName = $lastName;
return $this;

}

/**
* Get lastName

3.1. Developers 55

CampaignChain Documentation, Release

*
* @return string

*/
public function getLastName()
{

return $this->lastName;
}

/**
* Set email

*
* @param string $email

* @return User

*/
public function setEmail($email)
{

$this->email = $email;
return $this;

}

/**
* Get email

*
* @return string

*/
public function getEmail()
{

return $this->email;
}

/**
* Set profileUrl

*
* @param string $profileUrl

* @return User

*/
public function setProfileUrl($profileUrl)
{

$this->profileUrl = ParserUtil::sanitizeUrl($profileUrl);
return $this;

}

/**
* Get profileUrl

*
* @return string

*/
public function getProfileUrl()
{

return $this->profileUrl;
}

/**
* Set profileImageUrl

*
* @param string $profileImageURL

* @return User

*/

56 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

public function setProfileImageUrl($profileImageUrl)
{

$this->profileImageUrl = $profileImageUrl;
return $this;

}

/**
* Get profileImageUrl

*
* @return string

*/
public function getProfileImageUrl()
{

return $this->profileImageUrl;
}

}

3. Add a Channel Icon Every Channel module should include a channel icon image, for easy identification within
the CampaignChain GUI. In most cases, the channel you’re trying to connect to will provide a logo image, so all that’s
really needed is to resize it to 3 different sizes (16x16, 24x24 and 32x32 pixels) and save it in PNG format.

Note: Remember to read the channel’s terms of use for its images, ensure that your usage of the image is compliant
and provide an image credit, link and/or attribution as needed.

For the XING Channel module created in this tutorial, the 16x16 channel icon image should be saved to your-
project/src/Acme/Location/XingBundle/Resources/public/images/icons/16x16/xing.png. Other image sizes should be
saved similarly. The name of the image (‘xing’) should match the descriptive string used in the module name (‘acme-
xing’)

At this point, your Channel and Location modules are complete.

Define Activities and Operations

With the Channel and Location defined, the next step is to define the Activities and Operations possible. To keep
things simple, we’ll assume that only a single Activity is required: sharing news on the user’s XING news stream.
This will be accomplished using XING’s REST API, which makes it possible to add posts to a user’s news stream.

1. Generate Operation and Activity modules The first step here is again to create modules for the Activity and
Operation. Remember that every Activity must have at least one Operation. In this case, since only one Operation
is needed, the Activity is equal to the Operation. This is important to know in advance, as it’s critical to proper
functioning and it’s also part of the information requested by the module generator.

Since Activity and Operation modules are linked, it’s generally recommended that you create the Operation module
first and the Activity module later. Use the CampaignChain module generator as before, and be aware that you will be
asked for additional information for Activity and Operation modules, as shown below:

$ php app/console campaignchain:generate:module
Module type: Operation
Vendor name: Acme
Module name: Xing
Module name suffix: message
Module display name: Post message on XING

3.1. Developers 57

CampaignChain Documentation, Release

Module description: This module posts a message on XING
Does the operation own its location?: true
Metrics for the operation: Comments, Likes
Author name: Acme Inc.
Author's email address: info@acme.example.com
Package license: Apache-2.0
Package description: XING module for CampaignChain
Package website URL: http://acme.example.com

The new bundle will be created at your-project/src/Acme/Operation/XingBundle with the name AcmeOperationXing-
Bundle.

Next, create the corresponding Activity module, as below. Note that the module name suffix is left empty on purpose
for this tutorial.

$ php app/console campaignchain:generate:module
Module type: Activity
Vendor name: Acme
Module name: Xing
Module name suffix:
Module display name: Post message on XING
Module description: This module posts a message on XING
Does the Activity module execute in a single Channel?: yes
Channels for the activity: acme/channel-xing/acme-xing
Hooks for the activity: campaignchain-due, campaignchain-assignee
Location parameter name: campaignchain.location.acme.xing
Does the Activity equal an Operation?: true
Operation parameter names for the Activity: campaignchain.operation.acme.xing.message
Author name: Acme Inc.
Author's email address: info@acme.example.com
Package license: Apache-2.0
Package description: XING module for CampaignChain
Package website URL: http://acme.example.com

Note that the module and module name suffix used in the Operation module should be correctly referenced in the
Activity module’s Operation parameter name.

The new bundle will be created at your-project/src/AcmeActivity/XingBundle with the name AcmeActivityXingBundle.

Note: Most of the code you see in the next few sections is automatically generated for you by the CampaignChain
module generator. You only need to copy and paste the parts that are specific to the channel you’re trying to connect
(in this example, XING).

2. Understand the XING API Once the modules are created, let’s look more closely at the message posting opera-
tion to be implemented. Review the image below, which displays a typical item in a XING user’s news stream.

58 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

As you can see, a XING news item is a simple text message. The most efficient way to post such a message to a XING
user’s stream programmatically is with the XING API. Using this API involves sending an authenticated POST request
to the API endpoint https://api.xing.com/v1/users/:id/status_message, and transmitting the message in the body of the
POST request. The XING documentation has an example and more information55.

Fortunately, you don’t need to worry about the nitty-gritty of creating, transmitting and handling POST requests and
responses. CampaignChain internally uses Guzzle56 and so, you can simply invoke Guzzle’s post() method to transmit
a POST request and process a POST response. Here’s an example of how it would work:

<?php

$client = new GuzzleHttp\Client(['base_uri' => 'https://api.xing.com/v1/']);
$request = $client->post(

'users/123456/status_message',
array(),
array('id' => '123456', 'message' => 'Hello world')

);
$response = $request->send();

Obviously, you still need an input form in CampaignChain for the user to enter the message. And, as one of Cam-
paignChain’s core capabilities is the ability to schedule activities and operations ahead of time, you’ll need to store
newly-created messages in the CampaignChain database, and implement a job to transmit them to XING at the appro-
priate time. The following sections will guide you through these tasks.

55 https://dev.xing.com/docs/post/users/:id/status_message
56 http://docs.guzzlephp.org/en/latest/quickstart.html

3.1. Developers 59

https://api.xing.com/v1/users/:id/status_message
https://dev.xing.com/docs/post/users/:id/status_message
http://docs.guzzlephp.org/en/latest/quickstart.html

CampaignChain Documentation, Release

3. Create An Entity and Entity Manager The first step is to create a XingMessage entity representing a XING
message, and a service manager to work with that entity. A stub entity should have been auto-generated for you already
at your-project/src/Acme/Operation/XingBundle/Entity/XingMessage.php. Simply update it to reflect the information
you wish to save for a message, as below:

<?php

// src/Acme/Operation/XingBundle/Entity/XingMessage.php

namespace Acme\Operation\XingBundle\Entity;

use CampaignChain\CoreBundle\Entity\Meta;
use Doctrine\ORM\Mapping as ORM;

/**
* @ORM\Entity

* @ORM\Table(name="acme_operation_xing_message")

*/
class XingMessage extends Meta
{

/**
* @ORM\Column(type="integer")

* @ORM\Id

* @ORM\GeneratedValue(strategy="AUTO")

*/
protected $id;

/**
* @ORM\OneToOne(targetEntity="CampaignChain\CoreBundle\Entity\Operation", cascade={"persist"})

*/
protected $operation;

/**
* @ORM\Column(type="text", length=420)

*/
protected $message;

/**
* @ORM\Column(type="text", length=255, nullable=true)

*/
protected $url;

/**
* @ORM\Column(type="text", length=255, nullable=true)

*/
protected $messageId;

/**
* Get id

*
* @return integer

*/
public function getId()
{

return $this->id;
}

/**
* Set operation

60 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

*
* @param \CampaignChain\CoreBundle\Entity\Operation $operation

* @return Status

*/
public function setOperation(\CampaignChain\CoreBundle\Entity\Operation $operation = null)
{

$this->operation = $operation;

return $this;
}

/**
* Get operation

*
* @return \CampaignChain\CoreBundle\Entity\Operation

*/
public function getOperation()
{

return $this->operation;
}

/**
* Set message

*
* @param string $message

* @return XingMessage

*/
public function setMessage($message)
{

$this->message = $message;

return $this;
}

/**
* Get message

*
* @return string

*/
public function getMessage()
{

return $this->message;
}

/**
* Set URL

*
* @param string $url

* @return XingMessage

*/
public function setUrl($url)
{

$this->url = $url;

return $this;
}

/**

3.1. Developers 61

CampaignChain Documentation, Release

* Get URL

*
* @return string

*/
public function getUrl()
{

return $this->url;
}

/**
* Set message id

*
* @param string $messageId

* @return XingMessage

*/
public function setMessageId($messageId)
{

$this->messageId = $messageId;

return $this;
}

/**
* Get message id

*
* @return string

*/
public function getMessageId()
{

return $this->messageId;
}

}

As you can see, the entity includes properties corresponding to those expected by the XING API (in this case, the
message text and the unique message identifier on XING), as well as some properties needed by CampaignChain.

You will also need an entity service manager, which will retrieve an instance of the entity by its identifier. Here’s the
code, which should be saved to your-project/src/Acme/Operation/XingBundle/EntityService/XingMessage.php.

<?php

// src/Acme/Operation/XingBundle/EntityService/XingMessage.php

namespace Acme\Operation\XingBundle\EntityService;

use Doctrine\ORM\EntityManager;
use CampaignChain\CoreBundle\EntityService\OperationServiceInterface;
use CampaignChain\CoreBundle\Entity\Operation;

class XingMessage implements OperationServiceInterface
{

/**
* @var EntityManager

*/
protected $em;

public function __construct(EntityManager $em)
{

$this->em = $em;

62 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

}

public function getMessageByOperation($id)
{

$message = $this->em
->getRepository('AcmeOperationXingBundle:XingMessage')
->findOneByOperation($id);

if (!$message) {
throw new \Exception(

'No message found by operation id '.$id
);

}

return $message;
}

public function cloneOperation(Operation $oldOperation, Operation $newOperation)
{

$message = $this->getMessageByOperation($oldOperation);
$clonedMessage = clone $message;
$clonedMessage->setOperation($newOperation);

$this->em->persist($clonedMessage);
$this->em->flush();

}

public function removeOperation($id)
{

try {
$operation = $this->getMessageByOperation($id);

$this->em->remove($operation);
$this->em->flush();

} catch (\Exception $e) {
}

}
}

The getMessageByOperation() method takes care of retrieving a specific message using its unique identifier in the
database.

This is also a good point to update the Operation module’s list of exposed services to include the new entity service
manager. To do this, update the file at your-project/src/Acme/Operation/XingBundle/Resources/config/services.yml
and add the service identifier to it, as shown below. Remember to leave the existing auto-generated service identifiers
as is.

src/Acme/Operation/XingBundle/Resources/config/services.yml

parameters:

services:
campaignchain.operation.acme.xing.message:

class: Acme\Operation\XingBundle\EntityService\XingMessage
arguments: [@doctrine.orm.entity_manager]

3.1. Developers 63

CampaignChain Documentation, Release

4. Create an Input Form for Entity Data With the entity created, the next step is to provide an input form that will
be rendered by the CampaignChain user interface. This form will be used when setting up a new XING message, and
the fields in the form must therefore correspond with the properties of the XingMessage entity.

The easiest way to create the form is by using Symfony’s Form component and FormBuilder
interface. The following code, which should be saved to the auto-generated file at your-
project/src/Acme/Operation/XingBundle/Form/Type/XingMessageOperationType.php, illustrates how to do this.

<?php

// src/Acme/Operation/XingBundle/Form/Type/XingMessageOperationType.php

namespace Acme\Operation\XingBundle\Form\Type;

use CampaignChain\CoreBundle\Form\Type\OperationType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolver;
use Symfony\Component\Form\Extension\Core\Type\TextType;

class XingMessageOperationType extends OperationType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('message', TextType::class, [

'property_path' => 'message',
'label' => 'Message',
'attr' => [

'placeholder' => 'Add message...',
'max_length' => 420

]
]);

}

public function configureOptions(OptionsResolver $resolver)
{

$defaults = [
'data_class' => 'Acme\Operation\XingBundle\Entity\XingMessage',

];

if ($this->content) {
$defaults['data'] = $this->content;

}
$resolver->setDefaults($defaults);

}

public function getBlockPrefix()
{

return 'acme_operation_xing_message';
}

}

The main work here is done by the buildForm() method, which takes care of creating the necessary form fields, and the
setDefaultOptions() method, which links the data entered into the form with the XingMessage entity created earlier.

Here’s an example of what the form looks like when rendered:

64 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

5. Create an API Client and Operation Processor In the previous steps, you enabled the user to enter details of
a new XING message into a form and have that data saved to the CampaignChain database. The next step is to build
an operation processor, which can check periodically for scheduled messages, authenticate against the XING API as
needed, and post those messages to the user’s stream.

To accomplish this task, it is necessary to create an HTTP client object which will handle authentication between
CampaignChain on the one hand, and the XING API on the other hand. Since CampaignChain already comes with an
OAuth client, you can use this client’s built-in functionality to take care of most of the heavy lifting.

To do this, go back to your Channel module and add the following XingClient object to it, at the location your-
project/src/Acme/Channel/XingBundle/REST/XingClient.php.

<?php

// src/Acme/Channel/XingBundle/REST/XingClient.php

namespace Acme\Channel\XingBundle\REST;

use Symfony\Component\HttpFoundation\Session\Session;
use Guzzle\Http\Client;
use Guzzle\Plugin\Oauth\OauthPlugin;
use Guzzle\Http\Exception\ClientErrorResponseException;
use Guzzle\Http\Exception\ServerErrorResponseException;
use Guzzle\Http\Exception\BadResponseException;
use CampaignChain\Security\Authentication\Client\OAuthBundle\EntityService\ApplicationService;
use CampaignChain\Security\Authentication\Client\OAuthBundle\EntityService\TokenService;

class XingClient
{

const RESOURCE_OWNER = 'Xing';
const BASE_URL = 'https://api.xing.com/v1';

/**

3.1. Developers 65

CampaignChain Documentation, Release

* @var ApplicationService

*/
protected $applicationService;

/**
* @var TokenService

*/
protected $tokenService;

/**
* XingClient constructor.

* @param ApplicationService $applicationService

* @param TokenService $tokenService

*/
public function __construct(ApplicationService $applicationService, TokenService $tokenService)
{

$this->applicationService = $applicationService;
$this->tokenService = $tokenService;

}

public function connectByActivity($activity)
{

return $this->connectByLocation($activity->getLocation());
}

public function connectByLocation($location)
{

$application = $this->applicationService->getApplication(self::RESOURCE_OWNER);
$token = $this->tokenService->getToken($location);

return $this->connect($application->getKey(), $application->getSecret(), $token->getAccessToken(), $token->getTokenSecret());
}

public function connect($appKey, $appSecret, $accessToken, $tokenSecret)
{

try {
$client = new Client(self::BASE_URL.'/');
$oauth = new OauthPlugin(array(

'consumer_key' => $appKey,
'consumer_secret' => $appSecret,
'token' => $accessToken,
'token_secret' => $tokenSecret,

));

return $client->addSubscriber($oauth);
} catch (ClientErrorResponseException $e) {

$request = $e->getRequest();
$response = $e->getResponse();
print_r($request);
print_r($response);

} catch (ServerErrorResponseException $e) {
$request = $e->getRequest();
$response = $e->getResponse();
print_r($response);

} catch (BadResponseException $e) {
$request = $e->getRequest();
$response = $e->getResponse();
print_r($response);

66 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

} catch(Exception $e){
print_r($e->getMessage());

}
}

}

The two important values set in this client are the constants at the top: the RESOURCE_OWNER constant specifies
the owning channel, which is then used to retrieve the keys and secrets needed for an authenticated API connection,
and the BASE_URL constant specifies the base URL for all API requests.

You will also need to update the Channel module’s list of exposed services to include the new client. To do this, update
the file at your-project/src/Acme/Channel/XingBundle/Resources/config/services.yml with the following information.

src/Acme/Channel/XingBundle/Resources/config/services.yml

parameters:

services:
acme.channel.xing.rest.client:

class: Acme\Channel\XingBundle\REST\XingClient
arguments: ["@campaignchain.security.authentication.client.oauth.application", "@campaignchain.security.authentication.client.oauth.token"]

You’ll notice that this client object merely takes care of connecting and authenticating against the XING API.
It doesn’t actually take care of creating and sending a POST request to the XING API. That task is han-
dled by a separate Job object, which should have been auto-generated within your Operation module at your-
project/src/Acme/Operation/XingBundle/Job/XingMessage.php.

<?php

// src/Acme/Operation/XingBundle/Job/XingMessage

namespace Acme\Operation\XingBundle\Job;

use CampaignChain\CoreBundle\Entity\Action;
use Doctrine\ORM\EntityManager;
use CampaignChain\CoreBundle\Entity\Medium;
use CampaignChain\CoreBundle\Job\JobActionInterface;
use Symfony\Component\HttpFoundation\Response;
use CampaignChain\CoreBundle\EntityService\CTAService;
use CampaignChain\Security\Authentication\Client\OAuthBundle\EntityService\TokenService;

class XingMessage implements JobActionInterface
{

/**
* @var EntityManager

*/
protected $em;

/**
* @var TokenService

*/
protected $tokenService;

/**
* @var XingClient

*/
protected $xingClient;

public function __construct(EntityManager $em, TokenService $tokenService, XingClient $xingClient)

3.1. Developers 67

CampaignChain Documentation, Release

{
$this->em = $em;
$this->tokenService = $tokenService;
$this->xingClient = $xingClient;

}

public function execute($operationId)
{

$message = $this->em
->getRepository('AcmeOperationXingBundle:XingMessage')
->findOneByOperation($operationId);

if (!$message) {
throw new \Exception('No message found for an operation with ID: '.$operationId);

}

$ctaService = $this->container->get('campaignchain.core.cta');
$message->setMessage(

$ctaService->processCTAs($message->getMessage(), $message->getOperation(), CTAService::FORMAT_TXT)->getContent()
);

$activity = $message->getOperation()->getActivity();
$identifier = $activity->getLocation()->getIdentifier();
$token = $this->tokenService->getToken($activity->getLocation());

$connection = $this->xingClient->connectByActivity($message->getOperation()->getActivity());

$request = $connection->post('users/' . $identifier . '/status_message', array(), array('id' => $identifier, 'message' => $message->getMessage()));
$response = $request->send();
$messageEndpoint = $response->getHeader('location');
$messageId = basename($messageEndpoint);
$messageUrl = 'https://www.xing.com/feedy/stories/' . strtok($messageId, '_');
$message->setUrl($messageUrl);
$message->setMessageId($messageId);

$message->getOperation()->setStatus(Action::STATUS_CLOSED);
$location = $message->getOperation()->getLocations()[0];
$location->setIdentifier($messageId);
$location->setUrl($messageUrl);
$location->setName($message->getOperation()->getName());
$location->setStatus(Medium::STATUS_ACTIVE);

$this->em->flush();

$this->message = 'The message "'.$message->getMessage().'" with the ID "'.$messageId.'" has been posted on XING. See it on XING: '.$messageUrl.'';

return self::STATUS_OK;
}

}

A Job object is always part of an Operation module and it is called as necessary to perform the corresponding operation.
It should implement the JobActionInterface, which mandates an execute() method which is called when the job is
executed.

If you look into the execute() method above, you’ll see that it begins by retrieving the required message from the Cam-
paignChain database (using the message identifier). It then uses CampaignChain’s CTA service and processCTAs()
method to inspect all URLs in the message body and replace those URLs that match a Location with short URLs for
tracking.

68 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

The next step is to invoke the XingClient created earlier from the service manager and uses the client to authenticate
against the XING API. The method uses the client’s inherited post() method to transmit a POST request to the API
endpoint https://api.xing.com/v1/users/ID/status_message containing the user’s identifier on XING and the message
content. If successful, the response will contain a Location header containing the URL to the posted message. It’s
now easy enough to extract the message identifier from this and create a new Location record pointing to it in the
CampaignChain database. This Location can later be used in CampaignChain’s Call-to-Action tracking.

At the same time, a new XingMessage record is also created to store the message URL and unique message identifier
on XING. This message identifier is particularly important, as it will later be used to collect statistics about the number
of likes and comments received on the message.

The final steps are to update the status of the operation in the CampaignChain database and present a success message
to the user.

You also need to update the Activity module’s list of exposed services to include the new job. To do this, update the
file at your-project/src/Acme/Activity/XingBundle/Resources/config/services.yml so it now looks like the following.

src/Acme/Activity/XingBundle/Resources/config/services.yml

parameters:
Parameters for the CampaignChain Activity modules in this Symfony bundle

campaignchain.activity.acme.xing:
bundle_name: "acme/activity-xing"
module_identifier: "acme-xing"
location: %campaignchain.location.acme.xing%
equals_operation: true
operations:

- %campaignchain.operation.acme.xing.message%
handler: "campaignchain.activity.controller.handler.acme.xing"

services:
The Symfony service evoking the default controller of the CampaignChain
core package
campaignchain.activity.controller.acme.xing:

class: CampaignChain\CoreBundle\Controller\Module\ActivityModuleController
calls:

- [setContainer, ["@service_container"]]
- [setParameters, ["%campaignchain.activity.acme.xing%"]]

The CampaignChain controller handler where the Activity's GUI and data
is being processed.
campaignchain.activity.controller.handler.acme.xing:

class: Acme\Activity\XingBundle\Controller\XingHandler
arguments:

- "@doctrine.orm.entity_manager"
- "@session"
- "@templating"
- "@campaignchain.operation.acme.xing.message"
- "@campaignchain.job.operation.acme.xing.message"

6. Define an Activity Handler The Activity module specifies the routes for creating and editing Operations. This
implies that the Activity should define four routes:

• A route to create a new Activity (‘new’)

• A route to edit an existing Activity (‘edit’)

• A route to display the details of an existing Activity (‘read’)

• A route to edit an existing Activity in the campaign timeline’s pop-up/lightbox view (‘edit_modal’)

3.1. Developers 69

https://api.xing.com/v1/users/ID/status_message

CampaignChain Documentation, Release

• A route for the submit action of the pop-up/lightbox view in the campaign timeline (‘edit_api’)

These routes are automatically generated for you in the Activity module’s campaignchain.yml file, as shown below:

src/Acme/Activity/XingBundle/campaignchain.yml

modules:
campaignchain-xing:

display_name: Post message on Xing
description: This module posts a message on Xing
channels:

- acme/channel-xing/acme-xing
routes:

new: acme_activity_xing_new
edit: acme_activity_xing_edit
edit_modal: acme_activity_xing_edit_modal
edit_api: acme_activity_xing_edit_api
read: acme_activity_xing_read

hooks:
default:

campaignchain-due: true
campaignchain-assignee: true

The corresponding controller and action names are also auto-generated in the Activity module’s routing.yml file:

src/Acme/Activity/XingBundle/campaignchain.yml

acme_activity_xing_new:
pattern: /activity/xing/new
defaults: { _controller: campaignchain.activity.controller.acme.xing:newAction }

acme_activity_xing_edit:
pattern: /activity/xing/{id}/edit
defaults: { _controller: campaignchain.activity.controller.acme.xing:editAction }

acme_activity_xing_edit_modal:
pattern: /modal/activity/xing/{id}/edit
defaults: { _controller: campaignchain.activity.controller.acme.xing:editModalAction }

acme_activity_xing_edit_api:
pattern: /api/private/activity/xing/byactivity/{id}/edit
defaults: { _controller: campaignchain.activity.controller.acme.xing:editApiAction }
options:

expose: true

acme_activity_xing_read:
pattern: /activity/xing/{id}
defaults: { _controller: campaignchain.activity.controller.acme.xing:readAction }

Normally, you’d need to create views and controllers for the routes above. However, CampaignChain offers you a
simpler approach: an ActivityHandler which contains methods to retrieve, create and process the data of an Activity.
A stub ActivityHandler will already be produced for you by the CampaignChain module generator; all you need to do
is fill out the stub methods with the appropriate code for your module.

Here’s the code for the XingHandler:

<?php

// src/Acme/Activity/XingBundle/Controller/XingHandler

70 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

namespace Acme\Activity\XingBundle\Controller;

use CampaignChain\CoreBundle\Controller\Module\AbstractActivityHandler;
use Symfony\Component\Form\Form;
use CampaignChain\CoreBundle\Entity\Location;
use CampaignChain\CoreBundle\Entity\Campaign;
use CampaignChain\CoreBundle\Entity\Activity;
use CampaignChain\CoreBundle\Entity\Operation;
use Doctrine\ORM\EntityManager;
use Symfony\Bundle\TwigBundle\TwigEngine;
use Symfony\Component\HttpFoundation\Session\Session;

use Acme\Operation\XingBundle\Entity\XingMessage;
use Acme\Operation\XingBundle\EntityService\XingMessage as XingMessageService;
use Acme\Operation\XingBundle\Job\XingMessage as XingMessageJob;

/**
* Class XingHandler

* @package Acme\Activity\XingBundle\Controller\Module

*/
class XingHandler extends AbstractActivityHandler
{

protected $em;
protected $session;
protected $templating;
protected $contentService;
protected $job;
private $message;

public function __construct(
EntityManager $em,
Session $session,
TwigEngine $templating,
XingMessageService $contentService,
XingMessageJob $job

)
{

$this->em = $em;
$this->session = $session;
$this->templating = $templating;
$this->contentService = $contentService;
$this->job = $job;

}

/**
* When a new Activity is being created, this handler method will be called

* to retrieve a new Content object for the Activity.

*
* Called in these views:

* - new

*
* @param Location $location

* @param Campaign $campaign

* @return null

*/
public function createContent(Location $location = null, Campaign $campaign = null)
{

return null;

3.1. Developers 71

CampaignChain Documentation, Release

}

/**
* Overwrite this method to return an existing Activity Content object which

* would be displayed in a view.

*
* Called in these views:

* - edit

* - editModal

* - read

*
* @param Location $location

* @param Operation $operation

* @return null

*/
public function getContent(Location $location, Operation $operation)
{

return $this->contentService->getMessageByOperation($operation);
}

/**
* Implement this method to change the data of an Activity as per the form

* data that has been posted in a view.

*
* Called in these views:

* - new

*
* @param Activity $activity

* @param $data Form submit data of the Activity.

* @return Activity

*/
public function processActivity(Activity $activity, $data)
{

return $activity;
}

/**
* Modifies the Location of the Activity.

*
* Called in these views:

* - new

*
* @param Location $location The Activity's Location.

* @return Location

*/
public function processActivityLocation(Location $location)
{

return $location;
}

/**
* After a new Activity was created, this method makes it possible to alter

* the data of the Content's Location (not the Activity's Location!) as per

* the data provided for the Content.

*
* Called in these views:

* - new

*

72 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

* @param Location $location Location of the Content.

* @param $data Form submit data of the Content.

* @return Location

*/
public function processContentLocation(Location $location, $data)
{

return $location;
}

/**
* Create or modify the Content object from the form data.

*
* Called in these views:

* - new

* - editApi

*
* @param Operation $operation

* @param $data Form submit data of the Content.

* @return mixed

*/
public function processContent(Operation $operation, $data)
{

try {
if(is_array($data)) {

$message = $this->contentService->getMessageByOperation($operation);
$message->setMessage($data['message']);

} else {
$message = $data;

}
} catch (\Exception $e){

// message has not been created yet, so do it from the form data.
$message = $data;

}
return $message;

}

/**
* Define custom template rendering options for the new view in this method

* as an array. Here's a sample of such an array:

*
* array(

* 'template' => 'foo_template::edit.html.twig',

* 'vars' => array(

* 'foo1' => $bar1,

* 'foo2' => $bar2

*)

*);

*
* Called in these views:

* - new

*
* @param Operation $operation

* @return null

*/
public function getNewRenderOptions(Operation $operation = null)
{

return null;
}

3.1. Developers 73

CampaignChain Documentation, Release

/**
* Overwrite this method to define how the Content is supposed to be

* displayed.

*
* Called in these views:

* - read

*
* @param Operation $operation

* @return mixed

*/
public function readAction(Operation $operation)
{

$message = $this->contentService->getMessageByOperation($operation);

return $this->templating->renderResponse(
'CampaignChainOperationXingBundle::read_message.html.twig',
array(

'page_title' => $operation->getActivity()->getName(),
'operation' => $operation,
'location' => $operation->getActivity()->getLocation(),
'activity' => $operation->getActivity(),
'message' => $message,
'show_date' => true,

));
}

/**
* The Activity controller calls this method after the form was submitted

* and the new activity was persisted.

*
* @param Activity $activity

* @param $data

*/
public function postFormSubmitNewEvent(Activity $activity, $data)
{
}

/**
* This event is being called after the new Activity and its related

* content was persisted.

*
* Called in these views:

* - new

*
* @param Operation $operation

* @param Form $form

* @param $content The Activity's content object.

* @return null

*/
public function postPersistNewEvent(Operation $operation, Form $form, $content = null)
{

$this->publishNow($operation, $form, $content);
$this->em->persist($content);
$this->em->flush();

}

/**
* This event is being called before the edit form data has been submitted.

74 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

*
* Called in these views:

* - edit

*
* @param Operation $operation

* @return null

*/
public function preFormSubmitEditEvent(Operation $operation)
{

return null;
}

/**
* This event is being called after the edited Activity and its related

* content was persisted.

*
* Called in these views:

* - edit

*
* @param Operation $operation

* @param Form $form

* @param $content The Activity's content object.

* @return null

*/
public function postPersistEditEvent(Operation $operation, Form $form, $content = null)
{

$this->publishNow($operation, $form, $content);
}

/**
* Define custom template rendering options for the edit view in this method

* as an array. Here's a sample of such an array:

*
* array(

* 'template' => 'foo_template::edit.html.twig',

* 'vars' => array(

* 'foo1' => $bar1,

* 'foo2' => $bar2

*)

*);

*
* Called in these views:

* - edit

*
* @param Operation $operation

* @return null

*/
public function getEditRenderOptions(Operation $operation)
{

return null;
}

/**
* This event is being called before the editModal form data has been

* submitted.

*
* Called in these views:

* - editModal

3.1. Developers 75

CampaignChain Documentation, Release

*
* @param Operation $operation

* @return null

*/
public function preFormSubmitEditModalEvent(Operation $operation)
{

return null;
}

/**
* Define custom template rendering options for editModal view as array.

*
* Called in these views:

* - editModal

*
* @see AbstractActivityHandler::getEditRenderOptions()

* @param Operation $operation

* @return null

*/
public function getEditModalRenderOptions(Operation $operation)
{

return null;
}

/**
* Let's a handler implementation define whether the Content should be

* displayed or processed in a specific view or not.

*
* Called in these views:

* - new

* - edit

* - editModal

* - editApi

*
* @param $view

* @return bool

*/
public function hasContent($view)
{

return true;
}

private function publishNow(Operation $operation, Form $form)
{

if (!$form->get('campaignchain_hook_campaignchain_due')->has('execution_choice') || $form->get('campaignchain_hook_campaignchain_due')->get('execution_choice')->getData() != 'now') {
return false;

}

$this->job->execute($operation->getId());
$content = $this->contentService->getMessageByOperation($operation);
$this->session->getFlashBag()->add(

'success',
'The message was published.'

);

return true;
}

}

76 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

The ActivityHandler includes a number of methods, designed to let you customize the handling of key events in the
CampaignChain workflow. You’ll find an explanation in the comments above each method, but let’s quickly look
through the key methods here:

• The constructor injects the key dependencies needed for the handler, including the entity service manager and
the job processor.

• The getContent() method returns an existing XingMessage entity, for use in an edit or display view.

• The processContent() method processes the input submitted in the Operation form and creates a new XingMes-
sage entity. It is also invoked to process modifications to an existing XingMessage entity.

• The readAction() method retrieves an existing XingMessage entity and sets template variables from its properties
for display.

• The postPersistNewEvent() and postPersistEditEvent() methods are called after a XingMessage entity is saved
to the database. In this example, both methods invoke the publishNow() method.

• The publishNow() method checks when the Activity is scheduled for and, if set to “now”, retrieves the job via
the service manager and invokes its execute() method to post the message to the XING API.

Note: The Activity and Operation modules use CampaignChain’s base views, and it is not necessary to create new
views unless you specifically wish to override the base views.

7. Collect Metrics and Create a Report Processor Most online channels expose an API to collect metrics on
posted data, such as the number of favorites, retweets, likes or comments. One of CampaignChain’s key features is the
ability to aggregate this data and generate reports to help end-users evaluate the success of a campaign.

To do this, it is necessary to define a second Job, this one responsible for periodically connecting to the service’s API,
collecting metrics and saving them to the CampaignChain database. These metrics are then used to generate reports
through the CampaignChain interface.

The CampaignChain module generator will have got you started by creating a stub Job for this purpose within your
Operation module, at your-project/src/Acme/Operation/XingBundle/Job/XingMessageReport.php. You’ll notice that
this stub file already includes variables for the two metrics, likes and comments, which you specified in Step 1 when
generating the Operation module.

Update this file with the following code:

<?php

// src/Acme/Operation/XingBundle/Job/XingMessageReport.php

namespace Acme\Operation\XingBundle\Job;

use CampaignChain\CoreBundle\Entity\SchedulerReportOperation;
use CampaignChain\CoreBundle\Job\JobReportInterface;
use Doctrine\ORM\EntityManager;

class XingMessageReport implements JobReportInterface
{

const OPERATION_BUNDLE_NAME = 'acme/operation-xing';
const METRIC_LIKES = 'Likes';
const METRIC_COMMENTS = 'Comments';

protected $em;
protected $container;
protected $message;

3.1. Developers 77

CampaignChain Documentation, Release

protected $operation;

public function __construct(EntityManager $em, $container)
{

$this->em = $em;
$this->container = $container;

}

public function getMessage(){
return $this->message;

}

public function schedule($operation, $facts = null)
{

$scheduler = new SchedulerReportOperation();
$scheduler->setOperation($operation);
$scheduler->setInterval('1 hour');
$scheduler->setEndAction($operation->getActivity()->getCampaign());
$this->em->persist($scheduler);

$facts[self::METRIC_LIKES] = 0;
$facts[self::METRIC_COMMENTS] = 0;

$factService = $this->container->get('campaignchain.core.fact');
$factService->addFacts('activity', self::OPERATION_BUNDLE_NAME, $operation, $facts);

}

public function execute($operationId)
{

$operationService = $this->container->get('campaignchain.core.operation');
$operation = $operationService->getOperation($operationId);

$message = $this->em
->getRepository('AcmeOperationXingBundle:XingMessage')
->findOneByOperation($operationId);

if (!$message) {
throw new \Exception('No message found for an operation with ID: '.$operationId);

}

$activity = $message->getOperation()->getActivity();
$messageId = $message->getMessageId();

$client = $this->container->get('acme.channel.xing.rest.client');
$connection = $client->connectByActivity($activity);

$request = $connection->get('activities/' . $messageId, array());
$response = $request->send()->json();

if(!count($response)){
$likes = 0;
$comments = 0;

} else {
$likes = $response['activities'][0]['likes']['amount'];
$comments = $response['activities'][0]['comments']['amount'];

}

// Add report data.

78 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

$facts[self::METRIC_LIKES] = $likes;
$facts[self::METRIC_COMMENTS] = $comments;

$factService = $this->container->get('campaignchain.core.fact');
$factService->addFacts('activity', self::OPERATION_BUNDLE_NAME, $operation, $facts);

$this->message = 'Added to report: likes = '.$likes.', comments = '.$comments.'.';

return self::STATUS_OK;
}

}

If you look into the execute() method above, you’ll see that it begins by retrieving the required message from the
CampaignChain database (using the message identifier). It then uses the message object’s getMessageId() method to
retrieve the unique identifier for that message on XING.

Next, it invokes the XingClient created earlier from the service manager and uses the client to authenticate against the
XING API.

It then uses the client’s inherited get() method to transmit a GET request to the API endpoint
https://api.xing.com/v1/activities/ID, passing the message identifier to XING. If successful, the response will include
complete details for the specified message, including the number of likes and comments it received. It’s now easy
enough to extract these metrics from the response and save them to the CampaignChain database using the Fact ser-
vice. The XING documentation explains this API method in more detail57.

The execute() method does the work of collecting data from the XING API and saving it to the CampaignChain
database...but how is it invoked? That’s where the schedule() method comes in it creates a new SchedulerReportOp-
eration that runs periodically for a specified operation. In this case, the scheduler is configured to collect data every
hour, and run for as long as the campaign associated with the operation.

Since the scheduler is associated with an Operation, it makes sense to invoke the schedule() method when the operation
is created. So, update the your-project/src/Acme/Operation/XingBundle/Job/XingMessage.php file and add the lines
below to its execute() method, to be executed after the message is successfully posted:

<?php

// src/Acme/Operation/XingBundle/Job/XingMessage

public function execute($operationId)
{

// ... snip
$location->setStatus(Medium::STATUS_ACTIVE);

// schedule data collection for report
$report = $this->container->get('campaignchain.job.report.acme.xing.message');
$report->schedule($message->getOperation());

$this->em->flush();
// ... snip

}

Conclusion

At this point, your modules are all complete. Once you add your modules to CampaignChain through the module
installer, or reset your system to automatically register them, you should be able to connect to a new XING location

57 https://dev.xing.com/docs/get/activities/:id

3.1. Developers 79

https://api.xing.com/v1/activities/ID
https://dev.xing.com/docs/get/activities/:id

CampaignChain Documentation, Release

and begin posting news to it. Try it out for yourself and see how easy it is!

Creating Update Routines for Your Module

When you update a CampaignChain installation, the automatic update functionality takes the update
routines provided with each CampaignChain module and applies them to the database schema and user-generated data
(e.g. data in the database or in the file system).

When developing your own modules, it is best practice to include such update routines as soon as something changes
in your module that affects the database schema or user-generated data.

CampaignChain ships with commands that support developers in creating and testing such update routines.

Prerequisites

Automatic updates only work if you installed CampaignChain as explained in the README.md file58.

To verify whether this is the case, please check whether the following tables exist in your CampaignChain database
and that they are populated with data:

• campaignchain_update_schema

• campaignchain_update_data

Warning: If you installed CampaignChain prior to July 23rd, 2016, then the automatic update functionality is not
included. Please make a new installation from scratch. If you need help with migrating your data, please contact
us.

http://www.campaignchain.com/contact

Schema Update

Whenever you add or modify an entity class60 in your CampaignChain module, it affects the database. To keep
track of changes and allow for automatic update of a CampaignChain installation, there are commands that ship with
CampaignChain:

• campaignchain:schema:diff : Automatically generates a PHP class that includes SQL commands that define how
to modify the database schema as per your changes.

• campaignchain:update:schema: Apply the changes to the database schema.

Given that our schema update functionality is based on the Doctrine Migration Bundle61, you could also use the
following command:

• doctrine:migrations:status

• doctrine:migrations:migrate

Warning: CampaignChain’s update functionality extends that of the Doctrine Migration Bundle to manage update
routines contained in multiple modules. Hence, you should not use other Doctrine Migration commands unless you
understand the inner workings of the Doctrine Migration Bundle in relation to CampaignChain’s module system.

58 https://github.com/CampaignChain/campaignchain/blob/master/README.md#installation
60 http://symfony.com/doc/current/book/doctrine.html#creating-an-entity-class
61 http://symfony.com/doc/current/bundles/DoctrineMigrationsBundle/index.html

80 Chapter 3. CampaignChain Community Edition

https://github.com/CampaignChain/campaignchain/blob/master/README.md#installation
http://www.campaignchain.com/contact
http://www.campaignchain.com/contact
http://symfony.com/doc/current/book/doctrine.html#creating-an-entity-class
http://symfony.com/doc/current/bundles/DoctrineMigrationsBundle/index.html

CampaignChain Documentation, Release

Note: As of now, schema updates are only available for MySQL.

Generate a Schema Diff Whenever you add or modify an entity class in a module, you should run the diff command
for that specific module. This ensures that the generated diff file includes only the changes for that single module.

Note: It is best practice to provide update routines per CampaignChain module.

To create a diff file, execute the following command in the root of your CampaignChain installation:

$ php app/console campaignchain:schema:diff

You will be asked to provide the Composer package name62, so that the command knows where to put the diff file.
For example: acme/my-package. Once you provided the name, the command will place a schema update file in the
directory /Resources/udpate/schema of your module. The name of the file is Version*.php.

Inside the schema update file, you will find the SQL commands for up- or downgrading. For example:

$this->addSql('RENAME TABLE acme_my_bundle_activity_sensors TO acme_my_bundle_activity_iot_devices');

If you are working on the same module for a longer time, it becomes cumbersome to always provide the package
name. To make life easier, you can configure a default package name in app/config/parameters.yml with:

campaignchain_update:
diff_package: acme/my-package

Test the Schema Update To test your schema update routines, run this command in the root of your CampaignChain
installation:

$ php app/console campaignchain:update:schema

You should now see the results of the applied changes:

Migrating up to 20160723191847 from 20160717050911

++ migrating 20160723191847

-> RENAME TABLE acme_my_bundle_activity_sensors TO acme_my_bundle_activity_iot_devices

++ migrated (0.05s)

++ finished in 0.05s
++ 1 migrations executed
++ 1 sql queries

If you would like to manually change something in the SQL and then test the schema update routine again, first
downgrade your installation to the previous version, so that it does not include your module’s updates. Issue this
command to find the previous version:

$ php app/console doctrine:migrations:status

62 https://getcomposer.org/doc/04-schema.md#name

3.1. Developers 81

https://getcomposer.org/doc/04-schema.md#name

CampaignChain Documentation, Release

In the displayed information, find the entry for the Previous Version:

>> Previous Version: 2016-07-17 05:09:11 (20160717050911)

Roll back your CampaignChain installation by issuing this command and the version number provided in above entry:

$ php app/console doctrine:migrations:migrate 20160717050911

Once you confirmed to downgrade, you run CampaignChain’s schema update command again to apply the changes:

$ php app/console campaignchain:update:schema

Data Update

If changes in your module affect user-generated data, then you should use the data update functionality available with
CampaignChain. Data updates are similar to schema updates, but they require more manual work.

Create the Data Update Class Start by defining the data update PHP class, which is supposed to implement the
data update interface and to reside in the /Resources/update/data folder of your module.

<?php
// /Resources/update/data/UpdateAddIdToName.php

namespace Acme\MyBundle\Resources\update\data;

use CampaignChain\UpdateBundle\Service\DataUpdateInterface;
use Doctrine\ORM\EntityManager;
use Symfony\Component\Console\Style\SymfonyStyle;

class UpdateAddIdToName implements DataUpdateInterface
{

private $entityManager;

public function __construct(EntityManager $entityManager)
{

$this->entityManager = $entityManager;
}

public function getVersion()
{

return 20160723191847;
}

public function getDescription()
{

return [
'Adding the device ID to its name to make it globally unique',

];
}

public function execute(SymfonyStyle $io = null)
{

$iotDevices = $this->entityManager
->getRepository('AcmeMyBundle:IotDevice')
->findAll();

if (empty($iotDevices)) {

82 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

$io->text('There is no IoT device to process');

return true;
}

foreach ($iotDevices as $iotDevice) {
$iotDevice->setName($iotDevice->getId().'-'.$iotDevice->getName());
$this->entityManager->persist($iotDevice);

}

$this->entityManager->flush();

return true;
}

}

In the __construct() method, you can inject Symfony services or parameters that the data update class needs to execute.
In our case, we pass the Doctrine entity manager to the constructor.

The getVersion() method is supposed to return the version string of this update, which consists of the year, month,
day, hour, minute and second. The version allows the CampaignChain updater to execute your data update in the right
order in relation to other data update scripts.

In the getDescription() method, you can provide multiple lines of information as array values, which will be displayed
in the shell while your data update routine gets executed.

The actual work is being done in the execute() method. This is where you can change data in the database, move or
rename files, connected to other applications to retrieve data, etc.

Define the Data Update Service Essentially, data updates are tagged Symfony services63. Hence, the next step is to
define the service for above data update routine.

In the /Resources/config/services.yml file of your module, add the following lines:

acme_my_bundle.update.add_id_to_name:
class: Acme\MyBundle\Resources\update\data\UpdateAddIdToName
arguments:

- '@doctrine.orm.default_entity_manager'
tags:

- { name: campaignchain.update.data }

What you see here is that we define a service name acme_my_bundle.update.add_id_to_name. The best practice is to
start with a string that resembles the Composer package name of your module, followed by .update. and then a string
that resembles the name of the data update class.

Next, we define the class path of the data update class.

The arguments parameter is where Symfony services and parameters can be passed to the constructor of the data
update class.

Finally, you must provide the tag campaignchain.update.data, because only then will your data update class be in-
cluded in CampaignChain’s updater.

Testing the Data Update Routine To test the data update routine for your module, issue this command in the route
of your CampaignChain installation:

63 http://symfony.com/doc/current/components/dependency_injection/tags.html

3.1. Developers 83

http://symfony.com/doc/current/components/dependency_injection/tags.html

CampaignChain Documentation, Release

$ php app/console campaignchain:update:data

Note: Currently, downgrading data updates is not possible.

Checklist for Developing Modules

• Make sure the GUI uses only Bootstrap components, CSS and JS. Where applicable, use the Braincrafted
Boostrap components64.

• Add license information and copyright notice on top of each file in your module.

• Did you remove all unnecessary files which have been automatically created by the module generator (e.g.
Controller/Default.php, Resources/doc)?

• Test against the sample data and first of all, make sure that it gets loaded properly.

• Update the sample data if applicable and in a respective feature or release branch.

• Make sure each module ships with schema and data update routines.

• Reset the system and install again to test whether the new feature breaks anything.

• Please contact us65 to add newly released modules to the modules store66.

3.2 Administrators

Documentation that explains how to install and configure CampaignChain.

3.2.1 Community Edition Administrator Handbook

Configuration

Overview

CampaignChain knows two types of configuration options:

• App-wide parameters

• Bundle-specific parameters

App-wide Parameters Parameters that configure the app-wide framework are prefixed with campaignchain.
and defined in two files:

• app/config/parameters.yml contains the parameters that should be considered during installation under the
parameters key.

• In app/config/config_campaignchain.yml, you will find other app-wide parameters (again under the
parameters key), which contain default values that should be fine for most installations of CampaignChain.

For example, in parameters.yml, there’s this option to define the route of the tracking script:

64 http://bootstrap.braincrafted.com/components.html
65 http://www.campaignchain.com/contact
66 https://github.com/store-campaignchain-com/store-campaignchain-com.github.io

84 Chapter 3. CampaignChain Community Edition

http://bootstrap.braincrafted.com/components.html
http://bootstrap.braincrafted.com/components.html
http://www.campaignchain.com/contact
https://github.com/store-campaignchain-com/store-campaignchain-com.github.io

CampaignChain Documentation, Release

parameters:
campaignchain.env: prod
campaignchain.tracking.js_route: /tracking.js

Bundle-specific Parameters Each bundle or module might define its own configuration options. Should you want to
override the default values, we recommend to set your values in app/config/config_campaignchain_bundles.yml under
an alias for each bundle, e.g. campaignchain_core.

For example:

campaignchain_core:
env: prod
tracking:

id_name: cctid
js_mode: prod
js_class: CCTracking
js_init: cc

You can look up the available options in the Resources/config/config.yml file for each bundle.

Themes

The look & feel of CampaignChain can be configured as follows.

Skin The colors of the CampaignChain theme can be changed through skins. The skins available are the same skins
as for AdminLTE67.

You can specify the skin in app/config/parameters.yml:

campaignchain.theme.skin: skin-black

Layout CampaignChain lets you configure various parts of the layout. For example, whether you want to show the
header and footer of the graphical user interface. This comes handy if you want to omit them to embed CampaignChain
through an iFrame.

The standard configuration of CampaignChain supports two layouts:

• default

• embedded

You can find the respective configuration in the config.yml file of the core bundle:

campaignchain_core:
theme:

layouts:
default:

show_header: true
show_footer: true

embedded:
show_header: false
show_footer: false

67 https://almsaeedstudio.com/themes/AdminLTE/documentation/index.html#layout

3.2. Administrators 85

https://almsaeedstudio.com/themes/AdminLTE/documentation/index.html#layout
https://almsaeedstudio.com/themes/AdminLTE/documentation/index.html#layout

CampaignChain Documentation, Release

To enable a specific layout, call a page in CampaignChain with the campaignchain-layout URL parameter. For exam-
ple:

http://www.mycampaignchain.com/?campaignchain-layout=embedded

The setting will be applied to all subsequent pages. If you want to go back to the default view, simply switch by
calling:

http://www.mycampaignchain.com/?campaignchain-layout=default

Call to Action Configuration

To enable CTA tracking (page 18) for a Channel, follow these steps:

1. Connect Trackable Channel In the CampaignChain header menu, click the Create New button and select a
Location that allows you to add the tracking JavaScript code provided by CampaignChain.

Choose the appropriate Location from the drop-down list, e.g. Website to include a Website into CTA tracking.

Fill in the required data to connect the Channel. For example, provide the base URL of a Website (you can omit adding
pages of the Website).

86 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

2. Include Tracking Code Once you’re done with connecting a trackable Channel, CampaignChain will display a
list of connected Channels to you. The list of Channels can also be reached via the settings icon in the header.

This list will include a button to enable CTA tracking for trackable Channels.

Clicking on such button will display a page with instructions to include the tracking snippet.

3.2. Administrators 87

CampaignChain Documentation, Release

2.1 Directly within HMTL Source Code If you own the Channel you plan to include and you also have full control
to directly manipulate the HTML source, then you can include the JavaScript snippet provided on the “Enable CTA
Tracking” page.

Include the snippet by adding the code to your Channel, ideally right before the closing body element (i.e. </body>
element) and make sure that it appears on all pages of the Channel.

2.2 Use Google Tag Manager In case you can’t access the Channel or instead of waiting months for someon else to
update the code of a Channel, Google Tag Manager (GTM) comes to the rescue. It lets you launch new tags with just
a few clicks. GTM supports container snippets, a small piece of JavaScript or non-JavaScript code that it includes into
your pages.

Google Tag Manager allows you to create a new Custom HTML Tag at the GTM Web interface68. Paste the Campaign-
Chain tracking code into the HMTL section. Make sure the event is fired on all pages. The last step is to publish your
new tag in GTM.

3. Anonymizing or Branding the Tracking Script If you want to hide from visitors to your CTA-tracked Channel,
that you are using CampaignChain or you want to custom brand the tracking code, then we have configuration options
for you.

One is in the app/config/parameters.yml file:

68 https://tagmanager.google.com

88 Chapter 3. CampaignChain Community Edition

https://tagmanager.google.com

CampaignChain Documentation, Release

parameters:
campaignchain.tracking.js_route: /tracking.js

The URL of the tracking script itself can be changed with campaignchain.tracking.js_route. There you defined the
path aka URI to the script relative to the base URL where CampaignChain is installed.

Warning: We recommend to not change the route after you started using CampaignChain. If you have to for
whatever reason, be aware that it affects all Channels that include the tracking snippet. They would have to adjust
the path to the tracking script in said snippet.

The other relevant configuration options can be found in app/config/config_campaignchain_bundles.yml:

campaignchain_core:
tracking:

id_name: cctid
js_mode: prod
js_class: CCTracking
js_init: cc

With campaignchain_core.tracking.id_name, you can define the name of the URL parameter which CampaignChain
attaches to links pointing to a connected channel. Make sure the name you choose is short and as unique as possible,
to avoid that it collides with other parameters that might already be in the URL.

Warning: Never change the id_name after you started using CampaignChain, because previous tracking data
might get lost and there are unforeseeable side-effects with upcoming changes to the functionality.

The name of the JavaScript class that appears inside the tracking script can be customized with the campaign-
chain_core.tracking.js_class parameter.

Finally, campaignchain_core.tracking.js_init allows you to define the name of the JavaScript function that is being
called to pass the Channel ID in the tracking code.

Warning: As with the route, we recommend to not change it after you started using CampaignChain, for the very
same reasons.

When accessed through the Symfony production environment (i.e. /app.php), then the tracking script will automati-
cally be minimized/obfuscated. This is how it looks then with the default configuration parameters explained above:

eval(function(p,a,c,k,e,d){e=function(c){return(c<a?'':e(parseInt(c/a)))+((c=c%a)>35?String.fromCharCode(c+29):c.toString(36))};if(!''.replace(/^/,String)){while(c--){d[e(c)]=k[c]||e(c)}k=[function(e){return d[e]}];e=function(){return'\\w+'};c=1};while(c--){if(k[c]){p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c])}}return p}('(d(){d Y(S){m z=H.1C("z");z.1D=S;z.1E="1F/1B";H.1A.1w(z)}6(1x p==="1y"){Y("//F.1z.1l/F/p/1G-1.11.1.1j.G")}Y("//1H.1O.1l/F/1v/G-V/2.1.2/G.V.1j.G");d q(){3.8="1Q";3.e=O;3.A=O;3.u=i.o.w;3.4="5-c";3.18="/1R/1N/1M/1I/K";6(3.4=="5"||3.4=="5-c"){b.9("3.8 = "+3.8)}}q.y.14=d(7){3.7=7;6(3.17()){6(3.4=="5"||3.4=="5-c"){b.9("s t B v r.")}6(3.4=="5"||3.4=="5-c"){m N="/1J.1K"}j{m N=""}m E="1L://1S.0.0.1:1u"+N+3.18+"/"+3.A;6(3.4=="5"||3.4=="5-c"){b.9("1p r: "+E)}p.F({S:E,I:{1o:3.8,1t:3.e,u:3.u,7:3.7},1r:"1q",1s:U,1n:3,1P:1Z,12:d(I,D){6(I.12){3.1c(I.2k)}6(3.4!="5-c"){i.o.w=3.7}j{b.9("1m 12: "+D);b.9("2l 2m R: "+3.7)}},1k:d(1h,2j,1f){6(3.4=="5-c"){b.9("1m 1k: r: "+E+", D: "+1h.D+", 2i: "+1f)}j{i.o.w=3.7}}})}j{6(3.4=="5"||3.4=="5-c"){b.9("2e s t 2f.")}i.o.w=3.7}};q.y.17=d(){m h="2g s t W Q \'"+3.8+"\'";6(3.u.10().f(3.8)<0){h=h+"B 1d v r";3.e=3.1g();6(3.e){h=h+", 2h B v Z."}j{h=h+" P B 1d v Z."}}j{3.e=1T((K 2o("[?|&]"+3.8+"="+"([^&;]+?)(&|#|;|$)").2t(3.u)||[,""])[1].2r(/\\+/g,"%20"))||O;h=h+" B v r."}6(3.4=="5"||3.4=="5-c"){b.9(h);b.9("s t L: "+3.e)}x 3.e};q.y.1c=d(n){6(3.7.10().f(3.8)>=0){x 13}2q(n){M"2p":J.2s(3.8,3.e);6(3.4=="5"||3.4=="5-c"){b.9(\'2n v V: s t W n "\'+n+\'", Q "\'+3.8+\'" P L "\'+3.e+\'".\')}15;M"2d":6(3.7.f(3.8+"=")>=0){m 1e=3.7.C(0,3.7.f(3.8));m l=3.7.C(3.7.f(3.8));l=l.C(l.f("=")+1);l=(l.f("&")>=0)?l.C(l.f("&")):"";3.7=1e+3.8+"="+3.e+l}j{6(3.7.f("?")<0)3.7+="?"+3.8+"="+3.e;j 3.7+="&"+3.8+"="+3.e}6(3.4=="5"||3.4=="5-c"){b.9(\'21 R r: s t W n "\'+n+\'", Q "\'+3.8+\'" P L "\'+3.e+\'".\')}15;M"1Y":6(3.4=="5"||3.4=="5-c"){b.9(\'1X 7 r "\'+3.7+\'" 1V R n "\'+n+\'".\')}15}};q.y.1g=d(){x J.1W(3.8)};q.y.1a=d(){6(3.u.10().f(3.8)>=0){6(H.19.f(o.23+"//"+o.24)!==0){J.2a(3.8);6(3.4=="5"||3.4=="5-c"){b.9("29 16.");b.9("Z 28.")}x 13}}6(3.4=="5"||3.4=="5-c"){b.9("25 a K 16.");b.9("26: "+H.19)}x U};i["T"]=i["T"]||d(X){6(i.p&&i.J){m k=K q();k.A=X;6(k.4=="5"||k.4=="5-c"){b.9("3.A = "+k.A)}6(k.1a()===13){k.14(i.o.w)}6(k.4=="5-c"){p("a").27("1i",d(1b){1b.2b()})}p("a").1i(d(){k.14(p(3).1U("w"));x U})}j{22(d(){i["T"](X)},2c)}}})();',62,154,'|||this|mode|dev|if|target|idName|log||console|stay|function|idValue|indexOf||logMsg|window|else|tracker|suffix|var|affiliation|location|jQuery|CCTracking|URL|Tracking|ID|source|in|href|return|prototype|script|channel|is|substring|status|ajaxUrl|ajax|js|document|data|Cookies|new|value|case|ajaxUrlMode|null|and|name|to|url|cc|false|cookie|with|channelId|loadScript|Cookie|toLowerCase||success|true|sendUrlReport|break|visit|getTrackingId|reportApiUri|referrer|newVisit|event|continueTracking|NOT|prefix|thrownError|getCookie|xhr|click|min|error|com|AJAX|context|id_name|API|jsonp|dataType|cache|id_value|8000|libs|appendChild|typeof|undefined|aspnetcdn|head|javascript|createElement|src|type|text|jquery|cdnjs|cta|app_dev|php|http|report|v1|cloudflare|timeout|cctid|api|127|decodeURIComponent|attr|due|get|Untouched|unknown|5000||Appended|setTimeout|protocol|host|Not|Referrer|on|deleted|New|remove|preventDefault|50|connected|No|exists|CTA|but|message|ajaxOptions|target_affiliation|Would|redirect|Stored|RegExp|current|switch|replace|set|exec'.split('|'),0,{}))

OAuth Apps

Create new OAuth Apps To allow CampaignChain to post to Twitter, Facebook and some more Channels, it must
be able to access the REST APIs of such Channels. Hence, CampaignChain must be registered as an App with these
Channels to receive an App Key and App Secret.

There are How-Tos available for each Channel:

• Twitter (page 116)

• Facebook (page 117)

• Linkedin (page 119)

• Google Analytics (page 120)

• MailChimp (page 121)

3.2. Administrators 89

CampaignChain Documentation, Release

• GoToWebinar (page 122)

• SlideShare (page 124)

Edit existing OAuth App credentials The App Keys and Secrets of Channels which have already been connected
with CampaignChain, can be edited as follows:

In the CampaignChain header menu, click the Settings icon and select OAuth Client Apps.

In the list of OAuth Apps, pick the entry you’d like to edit by clicking on the Edit icon.

90 Chapter 3. CampaignChain Community Edition

CampaignChain Documentation, Release

Change the Key and Secret field and click Save.

System Requirements

To run CampaignChain, your system must meet the following requirements:

• Composer (https://getcomposer.org/)

• PHP 5.4 or better

• PHP’s JSON, PDO and intl extensions enabled

• PHP’s system() function must work

• MySQL 5.5 or better

3.2. Administrators 91

https://getcomposer.org/

CampaignChain Documentation, Release

• Java 1.5 or better

92 Chapter 3. CampaignChain Community Edition

Part IV

CampaignChain Enterprise Edition

93

CampaignChain Documentation, Release

The CampaignChain Enterprise Edition is a commercial product. It is based on the CampaignChain Community
Edition and provides additional features, such as easy deployment for development or production environments, as
well as automated updates to simplify the maintenance of CampaignChain instances.

95

CampaignChain Documentation, Release

96

CHAPTER 4

CampaignChain Enterprise Edition

The CampaignChain Enterprise Edition is a commercial product for in-house IT teams or service providers who
would like to build custom solutions. With the Custom Edition, they can benefit from easier maintenance, additional
functionality, as well as services and support from the vendor.

The Enterprise Edition is based on the CampaignChain Community Edition. It provides additional end-user features
and simplifies deployment for development or production environments.

4.1 Administrator Handbook for EE

4.1.1 Installation

Platform.sh

This is a step-by-step guide on how to deploy CampaignChain Enterprise Edition on Platform.sh.

CampaignChain Enterprise Edition can be installed out-of-the-box on Platform.sh, either for production or develop-
ment.

What’s great about Platform.sh is that you can hook it up with GitHub to automatically re-build and update Campaign-
Chain on a Platform.sh server as soon as changes to the code have been pushed to GitHub.

Development or Production

You can configure Platform.sh so that CampaignChain will be built and deployed either for development or production
use.

When in production mode, CampaignChain will be installed when you first create the Platform.sh environment and
afterwards, update routines will be executed automatically upon every push to the GitHub repository which keep the
database up-to-date.

When in development mode, CampaignChain will be installed from scratch every time a GitHub push happens. Addi-
tionally, sample data will be imported to CampaignChain automatically. This means that all data created manually in
the database will be lost.

Configuring Platform.sh and GitHub

First, you create a new Platform.sh project by following these steps:

97

CampaignChain Documentation, Release

1. Select a Platform.sh plan69. Select “Development” if you would like to use Platform.sh as a live development
environment or another plan if you’d like to use it for a production site.

2. Add an environment variable70 to the Platform.sh environment with the name campaignchain.env and either
the value “dev” for developing with CampaignChain, or “prod” to run CampaignChain EE for production use.
Don’t forget to put the value in quotes. Activate the JSON value checkbox.

3. To allow Platform.sh to access the private GitHub repositories which are included in the distribution, proceed
as follows: Copy the SSH deploy key71, then log into GitHub as the Platform.sh machine user. You can find the
username and password in the credentials file you received with CampaignChain EE. Then add the Platform.sh
deploy key, which you just copied, as a new deploy key of the machine user72.

Deploying on Platform.sh

To sync the CampaignChain EE GitHub repository with Platform.sh, install the Platform.sh Command Line Interface73

on your computer.

Then execute the following command. Replace [project-id] with the ID of your Platform.sh project and [github-token]
with your personal access token74 for GitHub:

platform integration:add --type=github --project=[project-id]
--token=[github-token]
--repository=CampaignChain/campaignchain-ee --build-pull-requests=true
--fetch-branches=true

69 https://accounts.platform.sh/platform/buy-now
70 https://docs.platform.sh/administration/web/configure-environment.html#variables
71 https://docs.platform.sh/development/private-repository.html#pull-code-from-a-private-git-repository
72 https://github.com/settings/keys
73 https://docs.platform.sh/overview/cli.html#how-do-i-get-it
74 https://docs.platform.sh/administration/integrations/github.html#1-generate-a-token

98 Chapter 4. CampaignChain Enterprise Edition

https://accounts.platform.sh/platform/buy-now
https://docs.platform.sh/administration/web/configure-environment.html#variables
https://docs.platform.sh/development/private-repository.html#pull-code-from-a-private-git-repository
https://github.com/settings/keys
https://docs.platform.sh/overview/cli.html#how-do-i-get-it
https://docs.platform.sh/administration/integrations/github.html#1-generate-a-token

Part V

Users

99

CampaignChain Documentation, Release

Tips & tricks for marketers to make the best use of CampaignChain.

101

CampaignChain Documentation, Release

102

CHAPTER 5

User Manual

5.1 Get Started

This is a brief step-by-step guide on how to create your first marketing Campaign and Activity within CampaignChain.
You will learn how to connect Twitter as a Channel and how to post a Tweet on the stream of the related Twitter user
account.

5.1.1 1. Connect to a Location

To show you how to connect a new Location, we’ll use Twitter as an example. To connect a Twitter Location with
CampaignChain, click the Create New button in the header menu and choose Location.

On the next screen, select Twitter as the Channel and click Next.

103

CampaignChain Documentation, Release

Note: Should you now see the Provide Application Credentials screen, then please see how to create new OAuth Apps
(page 89).

When clicking the button Connect with Twitter, the login screen for Twitter will be displayed to you. Please enter your
Twitter user name and your Twitter password.

If Twitter accepted your credentials, the stream of the Twitter user you logged in as will now be available as a Channel
Location within CampaignChain.

104 Chapter 5. User Manual

CampaignChain Documentation, Release

5.1.2 2. Create a Campaign

An Activity such as posting on Twitter can only be created from within a Campaign. Click the Create New button in
the header and choose Campaign.

Select the campaign type Scheduled Campaign and proceed with Next.

Fill in the fields to populate your new Campaign with data, such as:

• Name: An arbitrary name of your Campaign, e.g. “Launch of new product”

• Timezone: The timezone of the Campaign. For international marketing teams, the best choice is UTC.

• Duration: Pick the start and end date of your Campaign.

• Assignee: The person in your team responsible for the Campaign.

Click Save and your first Campaign will be created.

5.1. Get Started 105

CampaignChain Documentation, Release

If you now click Plan in the header navigation, you will see your new Campaign in the Timeline.

106 Chapter 5. User Manual

CampaignChain Documentation, Release

5.1.3 3. Create an Activity

Now you are ready to create your fist Activity, which will be posting a status update on Twitter.

Click the Create New button in the header and choose Activity.

In the next screen, select your newly created Campaign and in the Location field, pick the Twitter user stream you just
connected to.

Once you have selected the Location, a new field will appear which allows you to select the Activity you want to
perform within the Location. Here, choose Update Status and click Next.

5.1. Get Started 107

CampaignChain Documentation, Release

A form will appear and prompt you to insert the following data:

• Activity Name: An arbitrary name that will be used within CampaignChain. For example, “Initial announce-
ment”.

• Twitter Message: This is the text that will appear on Twitter, e.g. “Try our new product, it’s awesome:
http://www.example.com/newproduct”

• Due: Here, you can schedule the tweet to be posted at a specific date and time.

• Assignee: Define who is responsible for taking care of this Tweet.

108 Chapter 5. User Manual

CampaignChain Documentation, Release

That’s it! If you now click Plan again, you will see the new Activity as part of your new Campaign.

5.1. Get Started 109

CampaignChain Documentation, Release

110 Chapter 5. User Manual

Part VI

Packages

111

CampaignChain Documentation, Release

Find the documentation for single packages included in CampaignChain below.

113

CampaignChain Documentation, Release

114

CHAPTER 6

Packages

This part of the documentation covers some of the modules included in or available for CampaignChain.

6.1 CampaignChain Twitter

This documentation covers the standard Twitter75 functionality available by default in the CampaignChain Community
Edition.

6.1.1 Features

• Connect a Twitter stream to CampaignChain with username and password

• Assign a Twitter message to a campaign

• Include up to 4 pictures in a Tweet

• Schedule a Tweet to automatically post it on Twitter at a given date and time

• Assign a responsible person to a Tweet

• Track the customer journey from an included link to the Location of a connected Channel (e.g. a Website page)

• Once a Tweet was posted, regularly collect statistical data about likes and re-tweets

• Ensure that the same Twitter content won’t be posted within 24 hours to avoid a duplicate status message error

6.1.2 Packages

The standard Twitter functionality is being provided by CampaignChain, Inc. through these packages:

• campaignchain/channel-twitter76

• campaignchain/location-twitter77

• campaignchain/activity-twitter78

• campaignchain/operation-twitter79

75 https://twitter.com/
76 https://github.com/CampaignChain/channel-twitter
77 https://github.com/CampaignChain/location-twitter
78 https://github.com/CampaignChain/activity-twitter
79 https://github.com/CampaignChain/operation-twitter

115

https://twitter.com/
https://github.com/CampaignChain/channel-twitter
https://github.com/CampaignChain/location-twitter
https://github.com/CampaignChain/activity-twitter
https://github.com/CampaignChain/operation-twitter

CampaignChain Documentation, Release

Although these modules are based on Symfony bundles80, they do not work independently of CampaignChain.

6.1.3 Installation

The above modules are included in the Community Edition by default.

6.1.4 Configuration

Before you can post on Twitter from within CampaignChain, an OAuth app must be created in Twitter:

1. Go to https://dev.twitter.com/apps and create a new application.

2. Fill out any required fields such as the application name and description.

3. Put your website domain in the Website field.

4. Provide the host name of your CampaignChain instance as the Callback URL (e.g. http://mydomain.com). Make
sure that you specify the correct scheme (http or https). If you omitted the Callback URL, the app won’t work
with CampaignChain.

5. The Callback URL’s parts must be identical with the router.request_context.host and
router.request_context.scheme parameters defined in the app/config/parameters.yml configuration file.

6. Once you have registered the app, connect to a Location (page 103) choosing Twitter as the Channel.

7. When the Provide Application Credentials screen comes up, go back to https://dev.twitter.com/apps, select your
app and visit the Keys and Access Tokens tab to copy and paste the Consumer Key and the Consumer Secret and
insert it in the Provide Application Credentials form.

6.1.5 Issues

Please post reports, questions, suggestions, etc. at https://github.com/CampaignChain/campaignchain/issues.

6.2 CampaignChain Facebook

This documentation covers the standard Facebook81 functionality available by default in the CampaignChain Commu-
nity Edition.

6.2.1 Features

• Connect a Facebook user or page stream to CampaignChain with username and password

• Assign a Facebook message to a campaign

• Include 1 picture in the Facebook message

• Schedule a message to automatically post it on Facebook at a given date and time

• Assign a responsible person to a Facebook message

• Track the customer journey from an included link to the Location of a connected Channel (e.g. a Website page)

• Once a Facebook update was posted, regularly collect statistical data about likes and comments

80 http://symfony.com/doc/current/bundles.html
81 https://www.facebook.com

116 Chapter 6. Packages

http://symfony.com/doc/current/bundles.html
https://dev.twitter.com/apps
http://mydomain.com
https://dev.twitter.com/apps
https://github.com/CampaignChain/campaignchain/issues
https://www.facebook.com

CampaignChain Documentation, Release

• Ensure that the same Facebook content won’t be posted within 24 hours to avoid a duplicate status message
error

6.2.2 Packages

The standard Facebook functionality is being provided by CampaignChain, Inc. through these packages:

• campaignchain/channel-facebook82

• campaignchain/location-facebook83

• campaignchain/activity-facebook84

• campaignchain/operation-facebook85

Although these modules are based on Symfony bundles86, they do not work independently of CampaignChain.

6.2.3 Installation

The above modules are included in the Community Edition by default.

6.2.4 Configuration

Before you can post on Facebook from within CampaignChain, an OAuth app must be created in Facebook:

1. Go to https://developers.facebook.com/apps and create a new application by clicking Create New App.

2. Fill out any required fields such as the application name and description.

3. Put your website domain in the Site Url field.

4. Provide the host name of your CampaignChain instance as the Callback URL (e.g. http://mydomain.com). Make
sure that you specify the correct scheme (http or https).

5. The Callback URL’s parts must be identical with the router.request_context.host and
router.request_context.scheme parameters defined in the app/config/parameters.yml configuration file.

6. Once you have registered the app, connect to a Location (page 103) choosing Facebook as the Channel.

7. When the Provide Application Credentials screen comes up, go back to https://developers.facebook.com/apps,
select your app and visit the Settings page to copy and paste the App ID and the App Secret and insert it in the
Provide Application Credentials form.

Should you want CampaignChain to post to Facebook streams which are not owned by the same Facebook account
which owns your OAuth App, then you must have your OAuth App approved by Facebook. To do so, click on App
Review on the left menu of your Facebook OAuth App.

The following Facebook login permissions87 will have to be approved:

• business_management

• email

• manage_pages

82 https://github.com/CampaignChain/channel-facebook
83 https://github.com/CampaignChain/location-facebook
84 https://github.com/CampaignChain/activity-facebook
85 https://github.com/CampaignChain/operation-facebook
86 http://symfony.com/doc/current/bundles.html
87 https://developers.facebook.com/docs/facebook-login/permissions

6.2. CampaignChain Facebook 117

https://github.com/CampaignChain/channel-facebook
https://github.com/CampaignChain/location-facebook
https://github.com/CampaignChain/activity-facebook
https://github.com/CampaignChain/operation-facebook
http://symfony.com/doc/current/bundles.html
https://developers.facebook.com/apps
http://mydomain.com
https://developers.facebook.com/apps
https://developers.facebook.com/docs/facebook-login/permissions

CampaignChain Documentation, Release

• public_profile

• publish_actions

• publish_pages

• read_insights

• user_friends

6.2.5 Issues

Please post reports, questions, suggestions, etc. at https://github.com/CampaignChain/campaignchain/issues.

6.3 CampaignChain Linkedin

This documentation covers the standard Linkedin88 functionality available by default in the CampaignChain Commu-
nity Edition.

6.3.1 Features

• Connect a Linkedin user or company page to CampaignChain with username and password

• Assign a Linkedin message to a campaign

• Include 1 picture in a Linkedin status update

• Schedule a Linkedin message to automatically post it on Linkedin at a given date and time

• Assign a responsible person to a Linkedin update

• Track the customer journey from an included link to the Location of a connected Channel (e.g. a Website page)

Note: To let CampaignChain regularly collect statistical data about likes and comments of Linkedin messages, you
would have to apply to become a Linkedin partner89. Otherwise, CampaignChain won’t have access to the respective
REST API endpoints.

6.3.2 Packages

The standard Linkedin functionality is being provided by CampaignChain, Inc. through these packages:

• campaignchain/channel-linkedin90

• campaignchain/location-linkedin91

• campaignchain/activity-linkedin92

• campaignchain/operation-linkedin93

88 https://www.linkedin.com
89 https://developer.linkedin.com/partner-programs
90 https://github.com/CampaignChain/channel-linkedin
91 https://github.com/CampaignChain/location-linkedin
92 https://github.com/CampaignChain/activity-linkedin
93 https://github.com/CampaignChain/operation-linkedin

118 Chapter 6. Packages

https://github.com/CampaignChain/campaignchain/issues
https://www.linkedin.com
https://developer.linkedin.com/partner-programs
https://github.com/CampaignChain/channel-linkedin
https://github.com/CampaignChain/location-linkedin
https://github.com/CampaignChain/activity-linkedin
https://github.com/CampaignChain/operation-linkedin

CampaignChain Documentation, Release

Although these modules are based on Symfony bundles94, they do not work independently of CampaignChain.

6.3.3 Installation

The above modules are included in the Community Edition by default.

6.3.4 Configuration

Before you can post on Linkedin from within CampaignChain, an OAuth app must be created in Linkedin:

1. Go to https://www.linkedin.com/secure/developer (or https://www.linkedin.com/secure/developer?newapp=)
and create a new application.

2. Fill out any required fields such as the application name and description.

3. Once you created the App, go to the Authentication menu entry.

4. Under Default Application Permissions, enable all permissions, i.e. r_basicprofile, r_emailaddress,
rw_company_admin, w_share.

5. Under OAuth 2.0, provide the host name of your CampaignChain instance as the Authorized Redirect URL (e.g.
http://mydomain.com). Make sure that you specify the correct scheme (http or https).

6. The Authorized Redirect URL’s parts must be identical with the router.request_context.host and
router.request_context.scheme parameters defined in the app/config/parameters.yml configuration file.

7. Once you saved all changes on the Authentication page, click on the JavaScript menu entry. There, add the host
name of your CampaignChain installation as a Valid SDK Domain.

8. After you saved the changes to the JavaScript page, connect to a Location (page 103) choosing Linkedin as the
Channel.

9. When the Provide Application Credentials screen comes up, go back to the Authentication page of your Linkedin
App to copy and paste the Client ID and the Client Secret and insert it in the Provide Application Credentials
form.

6.3.5 Issues

Please post reports, questions, suggestions, etc. at https://github.com/CampaignChain/campaignchain/issues.

6.4 CampaignChain Google Analytics

This documentation covers the standard Google Analytics95 functionality available by default in the CampaignChain
Community Edition.

6.4.1 Features

• Connect a Google Analytics account to CampaignChain with username and password

• Pull data from Google Analytics to relate the Website traffic during a campaign statistics of other Channels (e.g.
likes of all Facebook posts).

94 http://symfony.com/doc/current/bundles.html
95 https://www.google.com/analytics/

6.4. CampaignChain Google Analytics 119

http://symfony.com/doc/current/bundles.html
https://www.linkedin.com/secure/developer
https://www.linkedin.com/secure/developer?newapp=
http://mydomain.com
https://github.com/CampaignChain/campaignchain/issues
https://www.google.com/analytics/

CampaignChain Documentation, Release

6.4.2 Packages

The standard Google Analytics functionality is being provided by CampaignChain, Inc. through these packages:

• campaignchain/channel-google-analytics96

• campaignchain/location-google-analytics97

Although these modules are based on Symfony bundles98, they do not work independently of CampaignChain.

6.4.3 Installation

The above modules are included in the Community Edition by default.

6.4.4 Configuration

Before you can use Google Analytics data within CampaignChain, an OAuth app must be created in Google:

1. Go to https://code.google.com/apis/console/ and create a new project if you did not do so yet.

2. Go to https://console.developers.google.com/apis/library, search for these APIs and enable them: Analytics API,
Google+ API

3. Go to https://console.developers.google.com/apis/credentials, click on Create credentials and select OAuth
client ID.

4. On the next page, select Web application.

5. Under Authorized JavaScript origins, enter the domain of your CampaignChain installation, e.g.
http://mycampaignchain.com.

6. Provide this URL as an Authorized redirect URI: http://mycampaignchain.com/security/authentication/client/oauth/login?hauth.done=Google.
Make sure that you specify the correct scheme (http or https).

7. The Callback URL’s parts must be identical with the router.request_context.host and
router.request_context.scheme parameters defined in the app/config/parameters.yml configuration file.

8. Once you have created the app, connect to a Location (page 103) choosing Google Analytics as the Channel.

9. When the Provide Application Credentials screen comes up, go back to
https://console.developers.google.com/apis/credentials, select your app and copy and paste the Client ID
and the Client Secret and insert it in the Provide Application Credentials form.

6.4.5 Issues

Please post reports, questions, suggestions, etc. at https://github.com/CampaignChain/campaignchain/issues.

6.5 CampaignChain MailChimp

This documentation covers the standard MailChimp99 functionality available by default in the CampaignChain Com-
munity Edition.

96 https://github.com/CampaignChain/channel-google-analytics
97 https://github.com/CampaignChain/location-google-analytics
98 http://symfony.com/doc/current/bundles.html
99 http://mailchimp.com

120 Chapter 6. Packages

https://github.com/CampaignChain/channel-google-analytics
https://github.com/CampaignChain/location-google-analytics
http://symfony.com/doc/current/bundles.html
https://code.google.com/apis/console/
https://console.developers.google.com/apis/library
https://console.developers.google.com/apis/credentials
http://mycampaignchain.com
http://mycampaignchain.com/security/authentication/client/oauth/login?hauth.done=Google
https://console.developers.google.com/apis/credentials
https://github.com/CampaignChain/campaignchain/issues
http://mailchimp.com

CampaignChain Documentation, Release

6.5.1 Features

• Connect a MailChimp account to CampaignChain with username and password

• Assign a MailChimp email campaign into a CampaignChain campaign

• Schedule a MailChimp newsletter to be distributed by MailChimp at a given date and time

• Assign a responsible person to a MailChimp newsletter within CampaignChain

• Track the customer journey from an included link to the Location of a connected Channel (e.g. a Website page)

• Once a newsletter was posted, regularly collect statistical data about opens, clicks, etc.

6.5.2 Packages

The standard MailChimp functionality is being provided by CampaignChain, Inc. through these packages:

• campaignchain/channel-mailchimp100

• campaignchain/location-mailchimp101

• campaignchain/activity-mailchimp102

• campaignchain/operation-mailchimp103

Although these modules are based on Symfony bundles104, they do not work independently of CampaignChain.

6.5.3 Installation

The above modules are included in the Community Edition by default.

6.5.4 Configuration

Before you can manage a MailChimp email campaign from within CampaignChain, an OAuth app must be created in
MailChimp:

1. Go to https://admin.mailchimp.com/account/oauth2/ and register an app.

2. Fill out any required fields such as the application name and description.

3. Provide the host name of your CampaignChain instance as the Redirect URL (e.g. http://mydomain.com). Make
sure that you specify the correct scheme (http or https).

4. The Callback URL’s parts must be identical with the router.request_context.host and
router.request_context.scheme parameters defined in the app/config/parameters.yml configuration file.

5. Once you have registered the app, connect to a Location (page 103) choosing MailChimp as the Channel.

6. When the Provide Application Credentials screen comes up, go back to
https://admin.mailchimp.com/account/oauth2/, select your app and copy and paste the Client ID and the
Client Secret and insert it in the Provide Application Credentials form.

100 https://github.com/CampaignChain/channel-mailchimp
101 https://github.com/CampaignChain/location-mailchimp
102 https://github.com/CampaignChain/activity-mailchimp
103 https://github.com/CampaignChain/operation-mailchimp
104 http://symfony.com/doc/current/bundles.html

6.5. CampaignChain MailChimp 121

https://github.com/CampaignChain/channel-mailchimp
https://github.com/CampaignChain/location-mailchimp
https://github.com/CampaignChain/activity-mailchimp
https://github.com/CampaignChain/operation-mailchimp
http://symfony.com/doc/current/bundles.html
https://admin.mailchimp.com/account/oauth2/
http://mydomain.com
https://admin.mailchimp.com/account/oauth2/

CampaignChain Documentation, Release

6.5.5 Issues

Please post reports, questions, suggestions, etc. at https://github.com/CampaignChain/campaignchain/issues.

6.6 CampaignChain GoToWebinar

This documentation covers the standard GoToWebinar105 functionality available by default in the CampaignChain
Community Edition.

6.6.1 Features

• Connect a GoToWebinar account to CampaignChain with username and password

• Assign a GoToWebinar Webinar to a campaign within CampaignChain

• (Re-)schedule a Webinar at a given date and time

• Within CampaignChain, assign a responsible person to a Webinar

• Collect statistics about registrations prior to a Webinar and afterwards the number of participants

6.6.2 Packages

The standard GoToWebinar functionality is being provided by CampaignChain, Inc. through these packages:

• campaignchain/channel-citrix106

• campaignchain/location-citrix107

• campaignchain/activity-gotowebinar108

• campaignchain/operation-gotowebinar109

Although these modules are based on Symfony bundles110, they do not work independently of CampaignChain.

6.6.3 Installation

The above modules are included in the Community Edition by default.

6.6.4 Configuration

Before you can manage a GoToWebinar Webinar from within CampaignChain, an OAuth app must be created in Citrix
(the company behind GoToWebinar):

1. Go to https://developer.citrixonline.com/user/me/apps and add a new app.

2. Fill out any required fields such as the application name and description and select GoToWebinar as the Product
API.

105 https://www.gotomeeting.com/webinar
106 https://github.com/CampaignChain/channel-citrix
107 https://github.com/CampaignChain/location-citrix
108 https://github.com/CampaignChain/activity-gotowebinar
109 https://github.com/CampaignChain/operation-gotowebinar
110 http://symfony.com/doc/current/bundles.html

122 Chapter 6. Packages

https://github.com/CampaignChain/campaignchain/issues
https://www.gotomeeting.com/webinar
https://github.com/CampaignChain/channel-citrix
https://github.com/CampaignChain/location-citrix
https://github.com/CampaignChain/activity-gotowebinar
https://github.com/CampaignChain/operation-gotowebinar
http://symfony.com/doc/current/bundles.html
https://developer.citrixonline.com/user/me/apps

CampaignChain Documentation, Release

3. Provide the host name of your CampaignChain instance as the Application URL (e.g. http://mydomain.com).
Make sure that you specify the correct scheme (http or https).

4. The Callback URL’s parts must be identical with the router.request_context.host and
router.request_context.scheme parameters defined in the app/config/parameters.yml configuration file.

5. Once you have added the app, connect to a Location (page 103) choosing GoToWebinar as the Channel.

6. When the Provide Application Credentials screen comes up, go back to
https://developer.citrixonline.com/user/me/apps, select your app and visit the Keys tab to copy and paste
the Consumer Key and the Consumer Secret and insert it in the Provide Application Credentials form.

Note: If you already have an account for http://developer.citrixonline.com, you would still have to create a new
separate account for https://www.gotomeeting.com/webinar should you not already have one.

6.6.5 Issues

Please post reports, questions, suggestions, etc. at https://github.com/CampaignChain/campaignchain/issues.

6.7 CampaignChain SlideShare

This documentation covers the standard SlideShare111 functionality available by default in the CampaignChain Com-
munity Edition.

6.7.1 Features

• Connect a SlideShare account to CampaignChain with username and password

• Assign a SlideShare slide deck to a campaign

• Schedule to make an already uploaded and private slide deck publicly available on SlideShare at a given date
and time

• Within CampaignChain, assign a responsible person to a slide deck

• Once a slide deck was made public, regularly collect statistical data about Views, Favorites, Downloads, Com-
ments

6.7.2 Packages

The standard SlideShare functionality is being provided by CampaignChain, Inc. through these packages:

• campaignchain/channel-slideshare112

• campaignchain/location-slideshare113

• campaignchain/activity-slideshare114

• campaignchain/operation-slideshare115

111 http://www.slideshare.net
112 https://github.com/CampaignChain/channel-slideshare
113 https://github.com/CampaignChain/location-slideshare
114 https://github.com/CampaignChain/activity-slideshare
115 https://github.com/CampaignChain/operation-slideshare

6.7. CampaignChain SlideShare 123

http://mydomain.com
https://developer.citrixonline.com/user/me/apps
http://developer.citrixonline.com
https://www.gotomeeting.com/webinar
https://github.com/CampaignChain/campaignchain/issues
http://www.slideshare.net
https://github.com/CampaignChain/channel-slideshare
https://github.com/CampaignChain/location-slideshare
https://github.com/CampaignChain/activity-slideshare
https://github.com/CampaignChain/operation-slideshare

CampaignChain Documentation, Release

Although these modules are based on Symfony bundles116, they do not work independently of CampaignChain.

6.7.3 Installation

The above modules are included in the Community Edition by default.

6.7.4 Configuration

Before you can post on SlideShare from within CampaignChain, an OAuth app must be created in SlideShare:

1. Apply for an API key at http://www.slideshare.net/developers/applyforapi.

2. Fill out any required fields such as the application name and description.

3. Once you received the API key via email, connect to a Location (page 103) choosing SlideShare as the Channel.

4. When the Provide Application Credentials screen comes up, insert the API key in the Provide Application
Credentials form.

Warning: If a SlideShare user was newly created with a Linkedin account, then please follow this workaround
to make sure CampaignChain can access the SlideShare REST API: Explicitly set the SlideShare password by
changing it from the Linkedin password to a new one at https://www.slideshare.net/ordnas/edit_manage_accounts.
Only then, the new password for SlideShare will allow CampaignChain to access the SlideShare REST API.
Also, when connecting the SlideShare account to CampaignChain, please be aware of the following: The
SlideShare username is not the same as the Linkedin username. For Linkedin, the username might be identical
with the account’s email, while the SlideShare username can be found in the SlideShare profile URL. For example,
amariki in http://www.slideshare.net/amariki.

6.7.5 Issues

Please post reports, questions, suggestions, etc. at https://github.com/CampaignChain/campaignchain/issues.

6.8 CampaignChain Update

The update feature is a package that is included in CampaignChain by default and can also be used independently from
CampaignChain as a regular Symfony bundle.

The update package offers you the ability to include update routines in multiple separate CampaignChain modules or
Symfony bundles. Essentially, it extends the DoctrineMigrationsBundle117.

6.8.1 Installation

CampaignChain

The ‘‘campaignchain/update‘ Composer package is included in any CampaignChain distribution by default. It will be
installed automatically.

116 http://symfony.com/doc/current/bundles.html
117 https://symfony.com/doc/current/bundles/DoctrineMigrationsBundle/index.html

124 Chapter 6. Packages

http://symfony.com/doc/current/bundles.html
http://www.slideshare.net/developers/applyforapi
https://www.slideshare.net/ordnas/edit_manage_accounts
http://www.slideshare.net/amariki
https://github.com/CampaignChain/campaignchain/issues
https://symfony.com/doc/current/bundles/DoctrineMigrationsBundle/index.html

CampaignChain Documentation, Release

Symfony

First, install the package with

$ composer require campaignchain/update "dev-master"

If everything worked, the update package can now be found at vendor/campaignchain/update.

Finally, be sure to enable the bundle in AppKernel.php by including the following:

// app/AppKernel.php
public function registerBundles()
{

$bundles = array(
//...
new CampaignChain\UpdateBundle\CampaignChainUpdateBundle(),

);
}

6.8.2 Configuration

You can configure the default package name and the target directories for the schema and update files in your
config.yml. The examples below are the default values:

campaignchain_update:
diff_package: campaignchain/core
bundle:

schema_dir: /Resources/update/schema
data_dir: /Resources/update/data

6.8.3 Usage

Learn how to use the update package in the tutorial on creating update routines (page 80).

6.8.4 Issues

Please post reports, questions, suggestions, etc. at https://github.com/CampaignChain/update/issues.

6.8. CampaignChain Update 125

https://github.com/CampaignChain/update/issues

CampaignChain Documentation, Release

126 Chapter 6. Packages

Part VII

Contributing to Documentation

127

CampaignChain Documentation, Release

Learn how to contribute to this documentation, about its license, and more.

129

CampaignChain Documentation, Release

130

CHAPTER 7

About this Documentation

7.1 Documentation Standards

7.1.1 Symfony Documentation Standards

CampaignChain documentation follows the documentation standards of the Symfony project118.

7.1.2 Additional Conventions

CampaignChain documentation also follows these additional conventions.

1. When referring to an CampaignChain entity, you should start the entity name with a capital letter. For example,
you should use “Channel module” instead of “channel module”. This makes it clear that you are referring to a
specific entity and not a generic channel, location, activity, operation, hook or milestone concept.

2. All file names and directory paths are italicized. You should always include a trailing slash on directory paths.
For example, public/images/icons/16x16/linkedin.png refers to a file name and your-project/src/ refers to a di-
rectory path.

3. When referring to key or parameters names in configuration files, those names should be italicized. However,
when referring to the corresponding values, you should enclose those values in single quotes. For example, the
parameter foo and the value ‘bar’.

4. CampaignChain documentation favors using :: shorthand for PHP code blocks and code-block:: syntax for other
code blocks. For example:

::
<?php
// PHP code block
$wizard = $this->get('campaignchain.core.channel.wizard');
$wizard->setName($profile->displayName);
$wizard->addLocation($location->getIdentifier(), $location);
$channel = $wizard->persist();
$wizard->end();

.. code-block::yaml

YAML code block
acme_campaignchain_channel_linkedin_create:

118 http://symfony.com/doc/current/contributing/documentation/standards.html

131

http://symfony.com/doc/current/contributing/documentation/standards.html

CampaignChain Documentation, Release

pattern: /channel/linkedin/create
defaults: { _controller: AcmeCampaignChainChannelLinkedInBundle:LinkedIn:create }

5. CampaignChain documentation calls out pieces of key information using note:: and tip:: specific admonitions.
For example:

.. note::
This is something important.

6. Images should be created in LibreOffice Draw119. Please provide the original .odg files in the /images/ directory
along with the related PNG file.

7.2 Documentation License

The CampaignChain documentation is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported
License120.

You are free:

• to Share — to copy, distribute and transmit the work;

• to Remix — to adapt the work.

Under the following conditions:

• Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way
that suggests that they endorse you or your use of the work);

• Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under
the same or similar license to this one.

With the understanding that:

• Waiver — Any of the above conditions can be waived if you get permission from the copyright holder;

• Public Domain — Where the work or any of its elements is in the public domain under applicable law, that
status is in no way affected by the license;

• Other Rights — In no way are any of the following rights affected by the license:

– Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;

– The author’s moral rights;

– Rights other persons may have either in the work itself or in how the work is used, such as publicity or
privacy rights.

• Notice — For any reuse or distribution, you must make clear to others the license terms of this work. The best
way to do this is with a link to this web page.

This is a human-readable summary of the Legal Code (the full license)121.

119 http://www.libreoffice.org/discover/draw/
120 http://creativecommons.org/licenses/by-sa/3.0/
121 http://creativecommons.org/licenses/by-sa/3.0/legalcode

132 Chapter 7. About this Documentation

http://www.libreoffice.org/discover/draw/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Part VIII

Miscellanea

133

CHAPTER 8

Glossary

Activity Every location allows one or more Activities which can be undertaken. For example, creating a new post is
an example of an Activity for a blog Channel.

Campaign Campaigns are a series of marketing operations utilizing one or more communication channels. Cam-
paigns have Milestones and Activities.

Channel Campaigns use online channels, which are the pathways by which campaign content reaches its audience.
Common examples of Channels include websites, blogs and social networks like Facebook and LinkedIn.

CTA Call to Action

GUI Graphical User Interface

Hook A Hook is a reusable component that provide common functionality and can be used across modules to con-
figure Campaigns, Milestones, Channels, Locations, Activities and Operations.

Location Every Channel includes one or more Locations, which allow granular publishing of campaign content. For
example, for a Twitter Channel, the Twitter stream is a Location.

Milestone Milestones are key events or reference points during a Campaign. For example, the campaign go-live date
could be a Milestone, and a press tour could be a second Milestone.

Module A module is a pre-packaged set of functionality. In CampaignChain, modules are developed as Symfony
bundles, with additional configuration that allows CampaignChain to load them into its system.

Operation Every Activity must always have at least one Operation. For example, posting on Twitter is one Activity
which equals the Operation.

Tracking ID Each Call to Action has a unique Tracking ID assigned by CampaignChain which enables Campaign-
Chain to match a URL clicked in a Channel to a Location specified inside CampaignChain.

135

CampaignChain Documentation, Release

136 Chapter 8. Glossary

Index

A
Activity, 135

C
Campaign, 135
Channel, 135
CTA, 135

G
GUI, 135

H
Hook, 135

L
Location, 135

M
Milestone, 135
Module, 135

O
Operation, 135

T
Tracking ID, 135

137

	I Abstract
	II What is CampaignChain?
	What is CampaignChain?
	What is CampaignChain?

	III CampaignChain Community Edition
	CampaignChain Community Edition

	IV CampaignChain Enterprise Edition
	CampaignChain Enterprise Edition

	V Users
	User Manual

	VI Packages
	Packages

	VII Contributing to Documentation
	About this Documentation

	VIII Miscellanea
	Glossary

